
A . C H R I S T O P H E R T O R E K

D I S T R I B U T E D V E R S I O N
C O N T R O L W I T H G I T A N D
M E R C U R I A L



2

copyright stuff
Dedication
NB: this front matter is still quite a hodgepodge; these are just

various thoughts.
[Find out if I can use a copy of xkcd #1597]
Git is notoriously difficult for beginners. In xkcd comic #1597,

Randall Munroe, referring to Git, draws a character (called “Cueball”
on the explainxkcd site) who says:

Just memorize these shell commands and type them to sync up. If you
get errors, save your work elsewhere, delete the project, and download
a fresh copy.

[Maybe turn the above into an epigraph?]
Everyone makes mistakes. The difference between being a novice

and being an expert cannot be boiled down to just one sentence, but
we can say that one—maybe the most important—difference is that
an expert can recover from mistakes mid-process. This book should
help you do so.

Git makes it easy to make mistakes, and also easy to correct them.
Mercurial makes it harder to make mistakes, but also harder to cor-
rect them.

There are already several good Git books, Chacon and Straub
[2014] and Loeliger [2009]. The primary author of Mercurial has
published a Mercurial book, O’Sullivan [2009]. So why write another
book?

Loeliger’s book is good but has become out of date—a constant
hazard with actively-developed software. Chacon’s book is on line
and gets updated, but focuses strictly on Git. O’Sullivan’s book fo-
cuses strictly on Mercurial. I’m not currently aware of any books that
approach version control in this particular manner, and show both
Git and Mercurial usage.

If you are reading this book, you probably have thought about
using Git or Mercurial (or even both), or you may have used them
in the past or be using them now and want to learn more. You may
be considering which one to use. The book will try to address all of
these.

I also wanted to have a book that could also appear as a series of
web pages that were structured very differently. That is, the book
would proceed in a logical building-up fashion, but using a web
hyperlink, you could start with any particular topic and zoom up
or down the scale of generalization or specialization to find specific
answers.

Part of the project was to write a program to produce hypertext
(HTML) web pages. It would read the LaTeX input, and actually use
LaTeX to generate figures, but keep the small-section-at-a-time setup.

https://xkcd.com/1597/


3

The text for the book and the text for the hypertext setup would
live together in (at least relative) harmony. At the time I write this,
the outcome of this experiment has yet to be determined.

Both Git and Mercurial have many Graphical User Interfaces
(GUIs) and Integrated Development Environments (IDEs) that al-
low you to browse commits, and in some GUIs and all IDEs, change
or create branches, make new commits, and so on. Every one of these
is different and we cannot possibly address them, so we will stick
with the command line interfaces.

[Here’s an intro bit that goes with the xkcd comic]
[scene: you’ve been given some shell commands to type]

$ git clone ssh://host.name/path/to/repo
$ cd repo
make changes...
$ git commit
repeat change-and-commit as needed
$ git pull --rebase

You may get a merge conflict, and not know what to do. Or maybe
you do know what to do, and have done it. But in any case, you want
to continue and you try (as instructed):

$ git rebase --continue

but now you get an error:

No changes - did you forget to use ’git add’?
If there is nothing left to stage, chances are that something else
already introduced the same changes; you might want to skip this patch.

When you have resolved this problem run "git rebase --continue".
If you would prefer to skip this patch, instead run "git rebase --skip".
To check out the original branch and stop rebasing run "git rebase --abort".

If you run git status , which is a good thing to use, you simply
see:

# Not currently on any branch.
nothing to commit (working directory clean)

You may also run into problems when you have used git merge

or git rebase successfully—or so you thought; and then you dis-
cover that you want or need to back out of the merge or rebase.

This book should set you up so that you know what to do.

Organization of this book

The book begins with an overview of version control in general. We
introduce terminology that you will need, and review some historical
version control systems and their distinguishing characteristics.



4

Next, we cover graph theory and how it applies to both Git and
Mercurial. It’s worth noting that while this theory has nothing to
do with the controlled source itself, it’s a basic building block for
performing source control. It not only interacts with merging and
rebasing, it is also fundamental to the distributed nature of Git and
Mercurial repositories.

The third chapter describes more precisely what is in a commit;
how we compare one commit to another; and how, at a high level,
merging works, using the commit graph described in Chapter 2. It
also mentions the issues with file path names that will affect you
once you distribute a repository across dissimilar operating systems.

The fourth chapter covers the mechanics of distributing repos-
itories, and one of the key consequences: that some commits are
public and some commits are private. Private commits can be deleted
without affecting others, but once a commit is published, it may be
impossible to retract it. It also includes some of the theory needed to
understand how commits can be signed and authenticated.

With these basics out of the way, Chapters 5 and 6 some of the
basic setup and usage of both Git and Mercurial. We discover just
how similar, and in some cases just how different, the two VCSes are.

XXX this is now wrong Chapter 6 discusses diffs: comparisons
between pairs of commits, or one commit and the corresponding
working-tree files.

Chapter 7 covers merging, which—while it has many variations—
basically amounts to combining two diffs.

Chapter 8 (. . . is not yet written).
Those who want to jump right to using Git or Mercurial can start

at Chapter 5, referring back to earlier theory chapters only as needed.
However, careful reading of the history and theory chapters should
give you a much better idea of what you are doing with the practical
aspects of version control.

Each page has room for graphics, side notes, and exercises. Side
notes that are numbered are specific details regarding items in the
main text. Unnumbered side notes are general ideas I find interesting
or relevant, yet not directly related to the main text. The exercises are
optional, but are meant to verify and cement your understanding of
the concepts involved.

ASCII

Chapter 3 refers to ASCII, the American Standard Code for Infor-
mation Interchange. This is a very old standard for saving and ex-
changing data on computer systems, in which one single-byte code
represents one letter, digit, or other printable symbol (and certain



5

“control” operations including tab, carriage return, and the like).
ASCII is an old standard, and by the 1980s, all computers could work
with it. It is not adequate to modern needs, but much is built upon it.

Numbers

This book mostly works with ordinary decimal numbers. However,
hashes are typically encoded in hexadecimal, with “digits” that range
from 0 through 9 but then continue on with abcdef, which may be
written in either uppercase or lowercase. In some places, we will use
a leading zero and letter-x to denote hexadecimal numbers: 0x10 rep-
resents the same number as 16, 0x80 represents the same number as
128, 0x100 represents the same number as 256, and so on. We will
write hashes as a27fc31 and the like, without any leading prefix.
While these do represent numbers inside the computer, their deci-
malized equivalent representations are not useful for anything.

Bugs

The term bug dates back to at least the 1870s and Thomas Edison.
The first application to computing may have been in 1947 when
Grace Hopper’s group at Harvard discovered a moth in the cir-
cuitry of the Harvard Mark II computer. (The log book containing
the remains of the moth is now in the possession of the Smithsonian
Institution; see Smithsonian Institution [1994]). Bugs are, however,
usually very small, difficult to observe from a distance, and can in-
duce a great deal of revulsion in some people. In this book, we will
instead use larger, friendlier mammals, specifically marsupials. In-
stead of moths, ants, spiders, centipedes, and cockroaches, we will
deliberately introduce kangaroos and wallabies into our programs
and processes, so as to illustrate their removal.

Target Audience, preface, introduction?





Animals in this book

The Marsupial Maker is not a real project, but marsupials are real This stuff is currently at front of book,
but probably should be at back of book.creatures, and I find them quite interesting. Here are photos of some

that I took on a trip to parts of Australia in February of 2010.

Plate 1: Red kangaroo, Healesville Sanctuary.

The kangaroo is probably the most widely known marsupial.
There are actually four species of large kangaroo: the red, the eastern
and western grey, and the antilopine. There are also smaller tree-
kangaroos and rat-kangaroos.



8

Plate 2: Bennet’s wallaby, Cradle Mountain.

The wallaby is smaller than any kangaroo, but in fact the term
“wallaby” is defined a bit loosely. There are many varieties of this
creature and they all resemble kangaroos, both in overall shape and
in their hopping gaits. This is a red-necked or Bennet’s wallaby.



9

Plate 3: Pademelon, Cradle Mountain.

The pademelon is even smaller than the wallaby. They are com-
mon in Tasmania. I think the smaller one is probably a nearly full
grown joey although they could be male (larger) and female (smaller).



10

Plate 4: Koala, Healesville Sanctuary

The koala vies with the kangaroo for being most widely known
marsupial. Koalas mostly eat eucalyptus leaves, which are not very
nutritious and actually rather toxic.1 As a result they spend most 1 Eucalyptus trees transplanted to Cal-

ifornia use their leaves to kill off native
trees. The sticky oil from the leaves is
fragrant but unpleasant to discover on
your car, and the trees contributed to
the 1991 Oakland firestorm.

of their time sleeping. Although they are very cute, they are not
very bright and can be rather aggressive. If you would nonetheless
like to hold a koala, note that this is permitted only in the states
of South Australia and Queensland. There are koala sanctuaries in
Queensland, in Brisbane and near Cairns. (Cairns is also a good base
for a visit to the Great Barrier Reef.)



11

Plate 5: Common Wombats, Cradle
Mountain.

Wombats are the gophers of Australia: they dig tunnel systems.
They look like big sleepy slow-movers but they can move very fast
when it suits them. Despite the name Common Wombat, these wom-
bats (and the other two living species, the northern and southern
hairy-nosed wombats) are not very common, having been hunted
and treated as pests for decades.



12

Plate 6: Tasmanian devils, Cradle Mountain.

Tasmanian devils look nothing like the cartoon version. They got
their name from the loud and rather scary noises they make when
feeding. In fact, though, while they fight with each other, they gener-
ally try to avoid humans. They are crepuscular2 and nocturnal eaters, 2 Dusk and dawn.

mostly of carrion, a lot of which is roadkill. This unfortunately puts
the Tasmanian devils in the position of becoming roadkill themselves.

They have the fascinating misfortune to be susceptible to a bite-
transmissible cancer called devil facial tumour disease. Although at first
there was a theory that there was some oncovirus3 involved, the cur- 3 Cancer causing virus.

rent best idea is that a genetic bottleneck has given most Tasmanian
devils an insufficient variety of Major Histocompatibility Complex
variants.



13

Plate 7: Spotted-tail quoll, Cradle Mountain. I apologize for the somewhat low quality of this image. My flash batteries went flat at
this point, and the quoll was restless and difficult to photograph.

The spotted-tail quoll (also known as the spotted quoll and tiger
quoll) is nocturnal and more common than its Tasmanian devil rel-
ative. The quoll prefers a wetter climate, and is found wild in main-
land Australia as well as on Tasmania. They are generally much
quieter than devils, although they can make a screaming noise that
has been compared to the sound of a circular saw. They eat various
insects, reptiles, and birds, but they will also eat small or injured
wallabies and pademelons, and will consume carrion.



14

Plate 8: Numbat, Perth Zoo.

Numbats are the quaggas of Australia: impossible to believe in
even after you have seen one.4 The numbat is also in danger of shar- 4 This award should really go to the

duck-billed platypus, but the platypus
is a monotreme rather than a marsu-
pial. British naturalist George Shaw
suspected a hoax when he received a
specimen in 1799, as did several more
naturalists over the next few years.

ing the quagga’s extinction,5 with an estimated total population of

5 The original African quagga, a sub-
species of zebra, is now extinct. The
Quagga Project is attempting to restore
a similar sub-species by selective
breeding, with some success so far;
see Heywood [2013].

under 1000 individuals (I found this number in several 2008 and 2010

reports but was unable to find anything newer).
The numbat is the emblem mammal of Western Australia. These

small, diurnal marsupials eat termites, and one numbat can eat
20,000 termites a day. The Perth Zoo is involved in a captive breeding
program with releases to the wild. I hope these little guys recover.



Contents

1 Version Control: Concepts and History 17

2 Git, Mercurial, and graph theory 35

3 Commits, files, diffs, and merges 47

4 Distributing repositories 67

5 Basic setup and viewing 83

6 Getting started 95

7 Working tree states: commits vs work-tree 117

8 Merges 137

Bibliography 157





1
Version Control: Concepts and History

A customer comes to you and says that your Marsupial Maker is pro-
ducing wallabies instead of kangaroos. He can’t or won’t (for size
or data sensitivity reasons) show you his entire input, but he has a
stripped down example for you. When he gives you his simplified
example, you try it and it works fine. Apparently it works in your lat-
est version, but not in his. You must have fixed the problem already!
You could just tell him to upgrade, but if he does upgrade and the
problem persists, you have wasted his time and annoyed a customer.

To prevent him from becoming an ex-customer, it would be nice
if you could go back to your old version and run his sample and
observe the problem. Then you could see what you’ve changed that
might have either papered over the problem, or actually fixed it. This
won’t guarantee that your latest version is good, or that you will find
the true root-cause of the problem, but it certainly improves your
chances.

What is a version control system?

At its core, a version control system provides the ability to choose
between older and newer versions of data as stored in computer
files. Entering these files into a version control system (VCS) is called
versioning or version-controlling the files. The file contents are typically
source code for computer programs, but any computerized files can
be version-controlled. For simplicity, we’ll refer to this as source code
that is made up of source files, but keep in mind that you can version-
control things that are not particuarly source-like. The document files
for this book are version-controlled, for instance.

Simply storing a new copy of a file every time it is changed—
some file systems provide this directly1—could be viewed as a basic 1 For instance, Files-11 on VMS and the

TENEX file system offer this option,
and various write-once (e.g., CD or
DVD-ROM) file systems must do it.

form of version control, but these are perhaps best thought of as
degenerate cases. Minimal version control systems add features such
as date- and name-based retrieval. You could ask the system to let



18 distributed version control with git and mercurial

you retrieve everything the way it was one month ago, or at a time
when you marked the source with the label “version 0.1-alpha”, for
instance. They also provide ways to view and compare versions,
to answer questions you might have such as “what, in general, has
happened to the source over time,” or to show changes in a particular
file or set of files between specific marked versions.

Thus, a VCS acts as a database of source files, with some way
of retrieving specific versions of the files. This database is called
the repository. When you add updated versions of your source files,
the database stores the updated sources inside the repository. Each
version of a file is also called a revision, so that if you fix a spelling
error and enter the updated file into the repository, you now have
another revision of that file.

Used as a verb, to version means to put under control of the VCS.
Used as a noun, version means a specific version taken from the VCS (of
one file, or of a group of files). Usually the noun form appears with
additional modifiers, as in the phrase the old version of kanga.c or
version 2.1 of roo.c. If no specific files are listed, we typically mean
everything, or at least everything recently under discussion: version
2.1 (of everything in the repository, or of the specific files and/or
directories we were talking about). The word revision is always a
noun, but otherwise means the same thing as version.

Another verb, to check in, means to store into the VCS. As you might
expect, if we can check in, we can also check out, meaning extract from
the VCS. Some VCSes add the verb to update, which they may use to
distinguish between extracting an older version (which you check out)
and moving up to the latest and (we hope) greatest (to which you
update). Mercurial uses update as a pure synonym for checkout.

Check in is sometimes hyphenated (check-in), or written as one
word, checkin. These avoid ambiguity: I’ll check in roo.c (look through
the code to see if any wallabies got in there) vs. I’ll check-in roo.c (to
store a new revision). Check out is likewise often written as one word,
checkout, or hyphenated, but the verb form is still checking out, which
reads much better than checkouting.

Newer VCSes add more noun-and-verb words:

• To commit means much the same as to check-in, but with some
technical differences we will see in a moment. As a noun, a commit
also refers to a version, but specifically one as stored by the verb
form of commit.

• To clone is basically a fancy term for copying an entire repository,
often from a different machine over a computer network, e.g., from
a web site. As a noun, a clone is a repostory made by cloning.

• To fork is functionally the same thing as cloning, but usually with



version control: concepts and history 19

a different intent. The noun form a fork is thus the same as a clone,
but those making making a fork may intend for their work to
diverge with little or no re-synchronization (perhaps forever or
perhaps for a limited time), and/or for still others to collaborate
via their fork instead of the original.

Why have version control?

With simple projects, you can handle version control by making
regular backups or archives.2 VCSes generally also provide metadata,3 2 In fact, there is a fairly close rela-

tionship between system backups and
version control. The key difference
between the two is a function of their
purpose.

Backups aim to allow you to restore
anything—one file, many files, or even
the entire system—after some kind
of error or disaster, including loss of
storage media. Backups therefore tend
to be performed on a time schedule,
such as hourly, daily, weekly, and so
on. When backups are aimed at disaster
recovery, we may delete intermediate
versions, e.g., discard all hourly back-
ups after a daily backup, then discard
all daily backups after a weekly backup.
In other words, backups are usually
made with a system-driven point of
view.

Version control systems, by contrast,
aim to allow you to view or restore
files from a user- and/or project-driven
point of view. New versions are entered
at check-in or commit time. We’ll see
more about this below. If discarding
old versions is allowed at all, it is also
normally done with specific care, rather
than according to a time schedule.

If you make backups at well-chosen
times, and keep those backups forever,
this does result in a form of version
control. Management and comparisons
of versions may prove difficult, though.
3 Metadata is simply data about data.
In this case, it’s information about the
versioning process.

such as log messages and automated date-and-time stamping. VCSes
commonly use their data and metadata to provide the following:

Versioning and repeatability This is the most basic part of version
control. Any VCS must provide the ability to retrieve a previous
version, the way it was stored at the time it was stored.

Accountability and tracing If you’re the sole developer on a project,
this is not really useful: everything that ever changed is your own
doing, whether the change was good, bad, or incomprehensible.
If you’re on a team or collaborating, though, knowing who made
some change in the past may be just as important as finding the
actual change. If nothing else, this allows you to ask the original
author about intent: why did she make that change?

Customized fixes Sometimes customers are unwilling or unable to up-
grade. This happens often in the embedded systems world, where
safety-critical systems like airplane controls, medical products, and
so on were tested and certified: upgrading can require a full re-test
and re-certification. Bug fixes to particular sub-components may
be allowed with fewer expensive and time-consuming tests.

In this case, having found the root cause of a particular customer’s
problem tied to a specific version of your product, you can in-
corporate a specfic fix and deliver a customized variant of the
product. (It’s worth noting that this can become a headache of its
own: you should weigh carefully the pros and cons of providing a
customized variant of your product, as the customer may demand
additional future changes done the same way. However, a good
version control system can make this process much simpler than it
would otherwise be.)

Simplifying development Whether you’re controlling application soft-
ware, documentation, web page themes, recipes for actual edible
cookies, or any other files on a computer, you will often find your- Incremental development has a long

history, going back to the 1950s;
see Larman and Basili [2003].

self doing iterative and incremental development. Here, you pro-
vide new versions with refinement and/or additional features and



20 distributed version control with git and mercurial

obtain user feedback as you work. Version control allows you to
step back to any previous version if the latest changes are disap-
proved, or to find where bugs have crept in over time.

A good version system also allows parallel development of dif-
ferent features (ideally completely unrelated, though often the ideal
is impossible, and in some cases the features may even be deeply
intertwined). These features can be produced as independently as dump the parenthetical?

feasible, then merged back into the main-line development, and/or
into each other, using the version control system’s tools. Isolating
each feature allows you to focus on one thing at a time, to what-
ever extent is allowed by the problem itself. Moreover, if you make
many small, incremental steps, then discover a problem as you
approach the finished feature, you may be able to re-use most of
your work.

Integration with bug-tracking systems Version control systems can use
file data or log message metadata to associate particular fixes with
particular bugs.

Automated testing Using commit atomicity (which we’ll define in a
moment), and optionally tied together with bug-tracking systems,
a version control system can automate testing, either at the time
the change is made, or after the fact for finding regressions.

Centralized vs distributed

Many older VCSes are centralized, or CVCSes. Git and Mercurial are
DVCSes: distributed version control systems.

The key difference between these two kinds of systems is that a
centralized VCS has a designated master repository. There may be
multiple copies of the master, or even multiple masters with some
kind of synchronization protocol (e.g., ClearCase MultiSite), but there
is only one master. Their design assumes this single-master-ship and
thus is allowed to depend on it.

With a distributed VCS, there is no designated master repository.
Users generally have a complete, private copy of each repository.
Communications between these private copies are, at least in princi-
ple, peer-to-peer operations: neither repository is any more master-
ful, and conflicts—situations where both Alice and Bob have made
changes to the same regions of the same files—can and do occur and
require some kind of resolution.

It’s always possible to use a distributed VCS in a centralized man-
ner: you simply designate one particular repository as the master
version, and coordinate updates to it. However, centralized systems
often provide features like locking source files or directories, re-



version control: concepts and history 21

stricting access (for read and/or write, to particular files, directories,
and/or branches), and so on. With a typical DVCS it’s more difficult In my opinion, most of these features

fill a much-needed gap.(though not technically impossible) to provide these, and Git and
Mercurial simply don’t, at least not without add-ons. With CVCSes
that provide locking, users may lock files (typically just one specific
version ID) to prevent other users from making conflicting changes.
This is conceptually easier, but of course it can prohibit parallel work.

A side note on trees

root

directory

file2 file3

file1 seconddir

file4

Figure 1.1: Tree of files in a file system.

The word tree is rather heavily overloaded in this book, and in com-
puting in general. Below, we talk of work-trees, which use the under-
lying operating system’s file-system trees consisting of directories—
sometimes called folders—that may contain files (which are still
always called files) and additional directories, which in turn may
contain still more files and directories. In the future, tree-structured file sys-

tems may well seem quaint. Today,
attaching attributes to files (e.g., tagging
email, photographs, and StackOverflow
postings) is augmenting or even re-
placing tree-oriented lookup. For now,
though, the versioning systems still use
trees.

Computer scientists prefer to draw their trees upside down, with
the root at the top and branches growing downward, as in Figure 1.1.
We’ll also see cases like Figure 1.4 where we draw our trees sideways,
with the root at the left.

kanga.c

kanga.c

kanga.c kanga.c

kanga.c kanga.c

kanga.c

Figure 1.2: Tree of versions of one file.

Besides storing trees made up of files and directories, we find that
version control systems must implement their own version trees.
For instance, suppose you store into the repository a change to one
particular file, such as kanga.c. Then you use the VCS to go back
to the previous version of kanga.c. While still using that previous
version, you store a different change, You have now created a version
branch. The old kanga.c now has two new revisions. Both have the
same parent version, so they are siblings in their family tree, as it
were. Each of these sibling versions can act as a parent to another
version of kanga.c. The VCS must be able to compare any revision
to its parent, so it needs to build the kind of tree shown in Figure 1.2.
Just as real trees have branches and roots, these version trees also
have branches and roots. The word branch can mean a branch in
this version tree; we’ll see more precise definitions later. (Also, you
might wonder—in fact, you should wonder—how we can distinguish
between all these kanga.c files when they are arranged in a version
tree like this. We’ll see more about this soon.)

Repositories and work-trees

VCSes distinguish between the repository (where files are well-
controlled and versioned) and the work-tree4 (where files are usually 4 The terms work-tree, working tree,

and work directory, hyphenated or not,
are all used interchangeably.

not versioned). The work-tree is typically where you edit the files,
compile them, and otherwise work with them. We already noted



22 distributed version control with git and mercurial

these verbs, but now we can describe them in more detail: checking
out or updating extracts a version from the repository to the work-
tree, and checking in or committing stores a new version from the
work-tree into the repository.

With a centralized VCS, the master repository can be left on a cen-
tralized server. We can then checkout to a work-tree on the user’s
machine (e.g., a laptop) without first copying the entire repository,
so the laptop’s storage can be smaller than the server’s. Typically we
can also extract only a small subset: if the repository contains hun-
dreds of packages, libraries, or other subsystems, we can check out
just one subsystem, or even just one file. This is convenient when
one is just making a quick and easy change. On the other hand, it re-
quires that the work-tree be connected (networked) to the centralized
server during checkout and checkin/commit operations, and if the
local workspace is disconnected, other revisions may not be available.

Since distributed VCSes usually copy the entire repository,5 the en- 5 Both Git and Mercurial now support
shallow clones and/or single-branch
clones, which can omit some of a reposi-
tory. We will address these later.

tire history is normally available at all times. The main tradeoff here
is longer setup times for the initial copy (the clone operation), and
additional non-volatile storage needed for the clone. These DVCSes
work hard to make synchronization operations efficient, so that once
you have the initial clone, obtaining new versions is relatively fast.
(For instance, I have seen initial clones that take four or more hours
over slow networks, but their resynchronizations usually take only a
few seconds.)

Atomicity: what is the smallest unit of revision?
I mention three historical version
control systems by their acronymic
names below: SCCS, RCS, and CVS. See
Table 1.3 for what these acronyms stand
for.

Older VCSes work with just one file at a time, using the check-out /
check-in model. Their unit of atomicity is the file. Even if you check
out (or in) many files at once, the VCS just does each operation on
a per-file basis, as if you had done them one at a time. Consider the
four buildable iterations shown in Table 1.1. Let’s assume that at
each iteration, a new set of compile-able files were all checked in
together—but our VCS only works with files, one file at a time. Ev-
ery file starts out as version 1, but at iteration 3, file kanga.c has two
versions, while file roo.c has three.6 The last buildable iteration in- 6 For the moment, we will just number

each file revision, without worrying
about making trees out of the revisions.

troduces the new file wallaby.c, which is now at version 1. Which
versions of which files do you need in order to build any given it-
eration? Which file-version combinations do you need to skip? The
answer is in our table, of course, but the VCS does not track this on
its own.

Newer systems, including Git and Mercurial, work on larger sets
of files. Their unit of atomicity is the commit. Committing a change
enters all the files at once. If anything goes wrong, no files get a new



version control: concepts and history 23

check-in iteration files

1 kanga.c:1*
2 1 kanga.c:1 roo.c:1*
3 kanga.c:2* roo.c:1
4 2 kanga.c:2 roo.c:2*
5 3 kanga.c:2 roo.c:3*
6 kanga.c:3* roo.c:3
7 4 kanga.c:3 roo.c:3 wallaby.c:1*

Table 1.1: Four buildable iterations,
recorded with file atomicity, resulting
in seven check-ins. The file actually
checked-in on each row is marked with
an asterisk.

revision; if the entire commit succeeds, all files get a new revision,
as shown in Table 1.2. Extracting the latest commit—row 4—gets
you the latest version of all three files. Backing up one version gets
you the previous kanga.c and roo.c—this changes the contents of
kanga.c while keeping the contents of roo.c the same—and removes
wallaby.c entirely, all automatically.

commit files

1 1:kanga.c 1:roo.c
2 2:kanga.c 2:roo.c
3 3:kanga.c 3:roo.c
4 4:kanga.c 4:roo.c 4:wallaby.c

Table 1.2: The same four buildable
iterations, but with commit atomicity.

Generally, in file-atomicity systems you can name or tag a set of
file-revisions that go together, and extract by tag. Tags tend to have
a noticeable cost—even if they don’t use a lot of space or time,7 they 7 Tags in CVS, for instance, are main-

tained on a per-file level, so that tagging
an entire tree is a very slow operation.

present a sort of revision clutter, and in practice they’re used only for
more-major checkpoints. Commit-based systems obviate the need for
these tags (though as we will see, tags are still useful).

A system with commit-based atomicity could still store individual
files labeled with their own individual revisions in its internal repos-
itory structure. In other words, the system may simply keep its own
tables mapping from commit to file revisions. The system may also Exercise 1.1: Suppose you were build-

ing a commit-based VCS using some
existing file-based VCS to do the file-
storage. How might you take a request
of the form “give me commit 3 in my
work-tree” and turn it into check-outs
of the proper file versions? Do you
need Table 1.2 for this?

have you check-in or add individual files, then commit the changes as
a whole. Ideally, whatever internal method the VCS uses is invisible,
but in practice, some of the seams may show.

Compression

One natural objection to keeping every version of every file is that
this will require too much storage space. VCSes therefore often use
file compression techniques. Ordinary compression algorithms such
as Huffman encoding, Lempel-Ziv, and so on are useful here: for
instance, Git uses zlib’s Deflate algorithm. However, given the nature



24 distributed version control with git and mercurial

of version control and the desire to be able to view the differences
between different versions of files, it makes a great deal of sense for
VCSes to use delta compression.8 8 Delta compression is a specific form

of the generalized string to string edit
problem. We want to find a minimal
edit distance, i.e., the fewest changes
needed to transform one string into
another. We use just two instructions:
delete and insert (sometimes we see a
third instruction, replace, but replace
is simply shorthand for delete-then-
insert). Allowing additional operations
such as moving substrings can produce
much smaller edit distances, but the
time complexity required to find them
increases. See, e.g., Cormode and
Muthukrishnan [2007].

Consider what happens with a single source file when you commit
a change. Suppose, for instance, that you replaced one line of code
with another different line, added a comment line, and removed an
unused variable. Regardless of how long the original source is, if we
already have the previous version of the file, we can save the new
version by saving only instructions, saying how to modify the pre-
vious version to produce the new one. In this case, the instructions
would read: delete the replaced line, insert the new version of the
replaced line, insert the new comment line, and delete the removed
variable.

The technique described above is a forward delta, which converts an
older revision into a newer revision. Many VCSes that use deltas use
reverse deltas, storing the latest variant intact and providing instruc-
tions for moving back in time to older versions.9 This makes sense 9 SCCS uses interleaved deltas, where

extracting any version takes approxi-
mately linear time.

since we tend to work on the latest code more often than on older
versions, and it’s faster to extract the latest version intact, with the
time needed to get an older version being proportional to the number
of deltas to apply. At the same time, though, reverse deltas present
implementation issues in branch-y revision structures.10 10 For instance, RCS uses reverse deltas

in what it calls its “trunk”, but forward
deltas within branches. See the sections
below for RCS’s trunk-vs-branch
distinction.

Note that commiting a file with no changes to it results in perfect
delta compression: the instructions are “make no changes”, i.e., the
instruction list is empty. This means that in practice, commit-based
systems use no more storage than file-based systems, even though
every commit must save every file every time.11 11 Of course, there are many more tricks

commit-based systems can use, even if
they don’t use delta compression.

Mercurial uses forward deltas internally with a simple scheme to
avoid having to chase long delta chains: when the chain is getting
too long, store a new full (but still zlib-deflated) copy. In any case
its implementation details are so well hidden as to be completely
invisible normally.

Git is often said not to use delta compression, which is true on
one level, but not on another. Like Mercurial, Git sets limits on delta
chain lengths. Git hides this compression in its pack files, using a
very clever and very unusual scheme. Its implementation is properly
abstracted away, so that the main place that its delta compression
shows through occurs when you see its Delta compression using up to n
threads progress messages.

File identity

The identity of a file seems obvious: it’s just a path name like kanga.c

or lib/marsupial.h. However, over time, we find that files are re-



version control: concepts and history 25

named, copied, deleted, and re-created. For instance, lib/marsupial.h
might be named include/marsupial.h in earlier or later versions.
Traditional VCSes need some way to track name-changes.12 Often, 12 SCCS and RCS did not even attempt

it: the name of the version-database file
was determined by the name of the file
within the work-tree, and vice versa.
This method is not really acceptable
today.

path names or path name changes are stored as separate metadata,
and the VCS turns the file name into an internal identifier (an object
or inode number, for instance) so that the system can see that two dif-
ferent path names in two different revisions really refer to the same
file.

Normally, this automatic name to ID mapping goes smoothly
enough, although you may need to inform the versioning system of
name changes (e.g., using hg mv rather than plain mv in Mercu-
rial).13 However, removing a file and then trying to re-add a file with 13 Mercurial is not actually doing

name-to-ID mapping here. The hg mv

step is instead recording directory
modifications for the next changeset.
To the user, though, this is a distinction
without a difference.

the same name (with or without a shared history) results in what
are called evil twins: two identical pathnames that refer to different
internal objects. These cause (VCS-specific) issues during merges. Git
sidesteps this problem entirely using a unique strategy we will cover
later, though it can still run into remarkably similar issues when
working with both case-sensitive and case-insensitive file systems
(e.g., Linux and Windows®): the user on the case-sensitive file system Git does not handle this situation very

well at all today. Similar problems can
occur with pathname encoding, e.g., in
UTF-8. We will see more about this in
Chapter 3.

can create roo.c and ROO.c, which are different files, but the user
on the case-insensitive file system cannot work with both files as the
operating system insists both these names identify one single file.

Branching and version numbering

Tables 1.1 and 1.2 simply number each revision sequentially, giving
a simple linear model of development. Version control systems must
provide richer models. They need not use numbers at all (and Git
does not), but two important historical systems—RCS, the Revision
Control System [Tichy, 1985], and SCCS, the Source Code Control
System [Rochkind, 1975], do number each revision. Reviewing their
numbering method is instructive, particularly in terms of the way
they handle branching files.14 14 These two systems use file atomicity,

though the numbering method shown
here would in principle work with
commit atomicity.

RCS and SCCS start each file with a pair of version numbers, major
and minor. Here the first version of kanga.c is not 1, but rather 1.1.
By default, each check-in increments the second number, going to 1.2,
1.3, and so on.

We may choose to mark a check-in as major,15 e.g., if we are mak- 15 This is not a technical term. We’re just
using it for now to separate the number
before the period from the one after the
period.

ing a new release of the Marsupial Maker. In this case, the VCS incre-
ments the first number and resets the second, giving us version 2.1,
2.2, and so on. When we release version 3, we can keep making im-
provements to the 1.x and 2.x versions, and when we release version
4, we can keep making improvements to all the old versions.

We can draw this as in Figure 1.3: a major number like 3 provides



26 distributed version control with git and mercurial

the branch on which versions are committed; adding the minor num-
ber, to get 3.1 or 3.2, gives us the revision within the branch.

1 2 3 4 . . .

3.1 3.2 3.3 3.42.1 2.21.1

Figure 1.3: Straightforward two-part
version numbering. You might won-
der why we bother with the arrows
here, since the numbers suffice. The
answer is that we will soon remove the
numbers. See Figure 1.6, for instance.Assume Figure 1.3 shows all of the 2.x and 3.x versions of file

kanga.c. It’s easy to see the latest 3.x version is 3.4. However, our
important Marsupial Maker customer is not using the latest version 3

release. We somehow16 discover that he is using kanga.c version 3.2 16 There were multiple schemes for
this, including embedding per-file
revision information directly in the
product, or building manifests (lists)
that map external releases to internal
file-version-lists.

and roo.c version 3.3.
We decide to produce a special fixed version for the customer. We

track part of the problem to kanga.c. To fix this problem, we need to
make a new sub-branch.

Extending our numbering system gives us an obvious way to
number this particular sub-branch: starting from revision 3.2 of
kanga.c, we make a 3.2.1 branch, and a new revision 3.2.1.1 within
that branch. If we need two internal iterations to fix the problem, the
second one will be 3.2.1.2, as in Figure 1.4.

1 2 3 4 . . .

3.1 3.2 3.3 3.4

3.2.1.1 3.2.1.2

2.1 2.21.1

Figure 1.4: Numeric sub-branches.

Exercise 1.2: Why do we add a pair of
numbers for these sub-branches? Hint:
consider what happens if a different,
but also important, customer needs a
different fix for kanga.c version 3.2, and
that using the fix for the first customer
complicates things. We’d like a new
sub-branch of version 3.2; what series of
numbers can we use?

Note that if, before we can produce the special fix for our impor-
tant customer, we must fix roo.c as well, we need a new 3.3.1 branch
in that file, as opposed to the 3.2.1 branch in kanga.c. This is a small
issue on its own, but ultimately it proved very annoying, especially
when this issue was multiplied by many thousands of files in large
code bases.

This branch-and-revision numbering system makes a nice theory,
but actual implementations sometimes get in the way. For instance,
RCS’s real revision structure involves adding two-component revi-
sion IDs to what it calls the trunk, and its branches begin only with
three-part revision IDs (with revisions within those branches having
four parts, sub-branches of branch-level revisions having five parts,
sub-revisions having six parts, and so on). Meanwhile, the trunk
can only be grown at its tip (the rightmost position in Figure 1.5).
As a result, once revision 4.1 exists, we can no longer add a revi-
sion 3.5. Instead, RCS will automatically check in a new 3.x version
(which should logically be 3.5) as new branch version 3.4.1.1, and the
next one as 3.4.1.2, and so on. If we later wish to branch the original
version 3.4 of that file, we start that branch with 3.4.2.1 rather than
3.4.1.1.



version control: concepts and history 27

3.1 3.2 3.3 3.4 4.1

3.4.1.1 3.4.1.23.2.1.1 3.2.1.2

Figure 1.5: Actual branch structure in
RCS. Versions before 3.1 are omitted to
fit the diagram on the page.

The need to start a new branch to continue working with an earlier
trunk version is also a relatively minor issue. However, like several
other minor issues, this get multiplied across many thousands of files
in a large system.

Commit-based systems remove the headache of having different
numbers for each file: for the customer with the private marsupial In practice, many systems use multiple

repositories so you may still need
multiple identities. We’ll see one
method of dealing with this using
subprojects, although these have their
own drawbacks.

fix, we need only find the identifier for the (single) commit from
which the software was built.

Branching with names

Numbering each of our branches (so that 3.2.1 is a branch of 3.2, and
3.4.1 and 3.4.2 are branches of 3.4) may be sufficient for the internal
workings of a VCS, but giving them names is much more useful to
humans. Figure 1.6 suggests a way we can do this.

main

release-v2

release-v3

customize

Figure 1.6: Revisions on named
branches.

Instead of a trunk as in RCS, we simply start with a main branch17 17 Git normally calls this master, and
Mercurial calls it default.and create new named branches as neeed. We add commits to each

branch as we go along. Since the branches are not numbered (and the
naming system for commits is not yet specified), we now rely on the
arrows between specific commits. This is why we have been drawing
the arrows all along.

In this case, once we identified the defective, wallaby-producing
commit our customer was using, we made a new customize branch
starting from that commit, and did our two iterations to fix kanga.c

and roo.c. The customize branch is now independent of the other
branches, so it’s safe to make any desired customer-specific fixes even
if they break other uses of the Marsupial Maker.

What is a branch? Do they exist without revisions?

The fundamental or philosophical idea behind a branch is that it
represents a line of development. We may make a branch for some tech-
nical or procedural reason that is not really “line of development”



28 distributed version control with git and mercurial

oriented, but the ability to branch so as to enable separate lines of
development is at the heart of any good, modern VCS. This tells us
why we have branches, but not what they are.

Figure 1.6 deliberately obscures a related question: do branches
exist if there are no revisions on them? This question might seem
silly at first, but it’s not. In fact, it’s tied deeply into this same ques-
tion of what, precisely, a branch is. Defining this generally is difficult,
because every VCS has its own unique branching features and de-
tails that vary. However, Git, Mercurial, and even Subversion do all
agree that creating a branch causes a logical copy of everything be-
ing branched. That is, you identify something—a file, a tree-of-files
(perhaps the entire work-tree), a commit or branch name, or even the
entire repository—as to-be-branched, and the system makes available
two copies of that object or set of objects: one on the original line
of development, and another on the new line of development. New
check-ins or commits on the previous branch do not affect files on the
new branch, and vice versa.

In both Git and Mercurial, you use one command to create a
branch, then a second command to make the first new commit
on that branch. In this case it seems as though the answer is yes:
branches exist before their commits. In both VCSes, though, the
actual answer is no: branches are not independent of commits.
Branches do not exist until there are commits on them.18,19 The two 18 I believe this is not really a funda-

mental constraint: both systems could
be modified—in different ways—to
allow empty branches. This is how they
currently work, though.
19 We will see in Chapter 2 that in Git, a
newly-created branch usually has many
commits on it immediately, so that the
entire question becomes a bit moot.
We can still see the distinction, though,
when we run git checkout --orphan.

systems achieve this in very different ways, but the end is the same:
the command that seems to create a branch may merely set up the
next commit to create the branch.

In both Git and Mercurial, then, it seems that a branch is just a
specific, non-empty collection of commits that share some particular
“line of development” idea. This is at least somewhat accurate, but
does not capture all the details. Moreover, as I just remarked earlier,
we sometimes need to create branches for technical or procedural
reasons (this is especially true in Git, which makes creating and de-
stroying branches easy, useful, and sometimes even fun).

Note that in clone-based, distributed VCSes, cloning (or forking)
a non-empty repository instantly creates a new branch, or perhaps
many new branches. This sidesteps many issues and (at the cost
of extra disk space)20 makes it easy to see just how new commits,

20 Both Git and Mercurial have methods
to avoid using extra disk space when
making local repository copies. The
effectiveness of some of these tricks
decreases over time, though, as new
commits go in.

whether they are on new or existing branches, won’t affect anyone
else’s work. It also makes it trivial to discard this kind of "branch":
just delete the extra repository. There’s nothing fundamentally wrong
with this method, but we’ll see how to use multiple branches within
one repository.



version control: concepts and history 29

The other way around: are commits separable from branches?

Figure 1.6 also deliberately obscures another question: How do we
know what branch a commit is on? For that matter, can a commit be
on no branch, or on multiple branches? Can we move a commit from
one branch to another? Again the answer is a bit difficult because
different VCSes use different strategies. For now, let’s just note these
two definite answers: In Git, a commit is on zero or more branches
simultaneously and the answer to "which ones" is tricky (further
details must await later chapters). In Mercurial, on the other hand,
each commit records its branch, so every commit is on exactly one
branch, where it stays forever.21 Hence Figure 1.6, which implies that 21 Or until stripped, anyway.

each commit is on the branch whose name is on the left, works well
enough for Mercurial, but not for Git.

Commit identity

We also still need some way to identify each commit. The commits
can be numbered sequentially, or there may be a GUID—a Glob-
ally Unique Identifier—for each commit. Sequential numbering is Exercise 1.3: GUIDs look like magic.

We’ll see later how both Git and Mercu-
rial achieve them, but meanwhile, what
method can you think of for turning
a commit into a unique number, that
will be the same on another system if
and when they make the exact same
commit?

convenient: revision 747 clearly comes before 803, for instance. Pro-
viding sequential numbering is difficult with distributed VCSes, for
an obvious reason: there’s no central location to give out unique but
sequential numbers.22 In addition, two revisions being in direct se-

22 Subversion, which has a centralized
repository, uses sequential numbering.

quence does not mean they’re directly related: revision 747 may be
on branch release/v2, with revision 748 on branch main and revision
749 on a third branch.

Git uses GUIDs: every commit has a name that looks something
like a2741b3 (but much longer); this name can be used at any time
and always refers to that specific commit. GUIDs have the advan-
tage that the same commit has the same GUID in every copy of the
distributed repositories that have it. However, they’re not very mem-
orable, and it’s not immediately obvious whether commits a2741b3

and 04677bb are related at all, much less whether one is the revision
just before or after the other.

Mercurial uses a hybrid approach: a revision has both a sequential
number and a GUID, such as 747:a2741b3. The sequence number is
local to the repository: when this commit is transferred to a different
Mercurial repository, it gets a new sequence number.23

23 The actual sequence number is the
next one available, so two repositories
that are synchronized regularly will
have mostly-similar numbers. This
has led some of my co-workers into
believing they can identify commits by
the local number, but it’s not true: for
instance, if Alice creates rev 747 in her
repository and Bob creates rev 747 in
his repository and then Alice picks up
Bob’s work, Bob’s code will be rev 748

in Alice’s repository. Meanwhile when
Bob picks up Alice’s work, that wiill
be his rev 748, so when they both pick
up Carol’s latest commit, they will both
number it 749.

Changesets and snapshots

Whether or not a VCS uses deltas internally, it must offer a way to
show the difference between a pair of revisions. Ideally you should be



30 distributed version control with git and mercurial

able to compare any two arbitrary revisions, but comparing adjacent
commits—i.e., before-and-after versions of all the files—to get the
set of instructions that modify the “before” version to produce the
“after” version gives you a changeset. In other words, this is a delta
or (if the change affects multiple files) a set of deltas that should be
applied all together.

The original set of files, including all the unchanged files, is a
snapshot. The new set of files, after applying all the deltas, is also a
snapshot. Algebraically (ignoring tricky issues like renamed files), we
can view this as two complete snapshots a and b, with their change-
set being b − a. Note that the changeset may have less information
than the two snapshots: in particular, all files unchanged from a to b
produce nothing—an empty delta—when subtracted, so they are not
in the changeset. However, if you have the previous snapshot and the
changeset, you can always produce the subsequent snapshot, since
a + (b− a) = b. Likewise, given two snapshots, you simply subtract
(or diff ) them to get a changeset. We will see interesting cases of con-
verting snapshots to changesets when we consider merges and cherry
picking.

Ideally, the underlying in-repo storage of a VCS should be irrel-
evant. Git’s authors are particularly enthusiastic about its storage
model, though, so Git should be thought of as using snapshots. Mer-
curial can be thought of either way, since it does a better job of hiding
its underlying storage representation, but it actually uses change-
sets. In any case, both systems will present changesets and snapshots
upon request.

Merging

Merging is a critical part of a VCS, giving it much of its power. With-
out the ability to merge, branching merely multiplies the amount of
work needed. Often, we wish to bring two branches back together.24 24 In Mercurial, only multiple “heads”

are actually necessary for making
merge commits. Git’s branches are
more loosely defined, and it is also
possible to make merge commits
in Git without using branch names.
Nonetheless, these are mostly small
semantic tweaks around the basic idea.

This may be temporary, so that previous work does not need to be
replicated; or it may be permanent, so that future work need not
be replicated either. Note that it is a merge—here the word merge is
a noun, or an adjective as in merge commit—that brings together or
merges (verb) the two lines of development. In both Git and Mer-
curial, for this to happen, you must have both of these lines in one
repository.

Let’s go back to our Marsupial Maker, and see what happens once
we’ve fixed the issue specific to our important customer. We will ig-
nore the main and release-v2 branches as well, reducing everything
to just the release-v3 and customize branches.

We’re ready to send the fix to our customer, or may even have al-



version control: concepts and history 31

ready sent it, but we have also been testing this fix to see if it applies
generally to version 3. It turns out that it does, but only if we use
just the first commit on customize. What we want, then, is to merge
the applicable part of the customer-specific fix back into the release
branch, keeping the second set of customer-specific changes private
to customize.

release-v3 B D M

customize E

Figure 1.7: Merging.

This is shown in Figure 1.7. The merge commit is the node la-
beled M. The precise details of how this merge is done are left for later
chapters. For now, note the commit labeled B: this is the merge base;
and note the two commits labeled D and E. The process by which the
merge commit is made is called a three-way merge.25 If this three-way 25 The name “three-way” refers to the

fact that these three items are used to
make the new fourth commit. Since
only two sets of changes are involved—
those from B to D, and those from B to
E—it might have been better to call this
a “two-way merge,” but it wasn’t.

merge finds no conflicts, Git and Mercurial will make the new com-
mit automatically. This works remarkably well in real-world code,
despite the fact that neither program has any deep understanding
of the files being merged,26 and are instead applying simple text

26 You can set up specific merge drivers
that implement more-intelligent
merges, but this is nontrivial.

substitution rules.

Concurrency model

Whether centralized or distributed, any VCS that lets multiple users
work independently of each other must offer some method for deal-
ing with potential conflicts. As mentioned earlier, one method is lock-
ing: before changing a file, the user must obtain a lock, which is then
released upon committing the change. This simple method has the
obvious problem mentioned earlier of prohibiting parallel work. It’s
possible to make the locks finer-grained—Alice might lock the top
half of the file, leaving the bottom half available for Bob to lock and
change—but this has scaling issues. In addition, users and/or admin-
istrators must have ways to break locks since users will lock files but
fail or forget to unlock them (e.g., after deciding not to commit).

If the VCS provides a merge model, two or more people may work
on the same files, and at defined rendezvous points—in a CVCS, at
check-in / commit time, for instance—they are given a chance to
reconcile their changes. Merges are also needed when combining
branches, and in modern DVCSes, the same methods are generally
used for both of these.

Note that in a DVCS, the rendezvous point (and hence any merg-
ing) can occur after checkin. Bob may be able to pick up Alice’s work



32 distributed version control with git and mercurial

before doing his own checking-in, but because the system is dis-
tributed, Bob does not have to wait for Alice (nor vice versa). Exercise 1.4: Consider this deferred

merge. What advantages might it
provide? What disadvantages can you
think of?What not to version

Not every file should always be versioned. Defining precisely what
should be committed and what should not is tricky. Most version
control systems can deal with non-text (data or binary) files, but
not necessarily very well. Git and Mercurial in particular will both
handle arbitrary files, but strongly prefer, in a sense, files that break
up into lines, and files that compress well, especially against previous
versions. Already-compressed files, such as many archive formats,
compress poorly if at all27—both against themselves, and against 27 Technically, these files have high Shan-

non entropy measures; see Chapter 4.previous versions of the same archive. Their components, however,
tend to compress well against previous versions, especially if they are
made from non-binary (text) inputs. Thus, as a general rule, it makes
more sense to version-control the original input files instead of the
resulting archive.28 28 This will increase the number of files

or other internal objects the VCS must
manage. The tradeoff here still usually
favors storing the originals, though.

The same reasoning applies to generated files such as compiled
code, PDF documents, and the like. (These are sometimes called build
artifacts today.) If you have original sources for these, along with
whatever software is required to translate the sources into the fin-
ished product, it is usually best to store only the original sources. Of
course, whatever did the translating is a key component as well, so
you may wish to store the translator, or the source to the translator,
or at the least, some sort of reference by which you can reconstruct the
original translation.

As Yogi Berra supposedly said (though attributions suggest a
Danish origin): “It’s tough to make predictions, especially about
the future.” Similarly, it is hard to know what you will need in the
future to reconstruct the past. But as a rule, the smallest possible set
of sources is the most appropriate thing to keep in your VCS.

Review of some common VCSes

Table 1.3 gives a far-from-complete list of some noteworthy version
control systems. It is meant only to offer a bit of flavor and insight
into the history of version control, and which systems have become
popular and commonplace and the features that drove it. These ap-
pear in (very) rough order of implementation.

The first two entries (SCCS and RCS) date back to time-sharing
Unix systems. If there were multiple developers, they shared a single
machine and there was no question of distributing a repository. CVS,
a follow-on to RCS, was written to take advantage of then-new net-



version control: concepts and history 33

Name Atomicity Concurrency Distributed?

SCCS file lock no
RCS file lock no
CVS file merge no

ClearCase file or commit lock or merge no
Subversion commit merge no

bazaar commit merge yes
Git commit merge yes
Mercurial commit merge yes

Acronyms: SCCS is the Source Code Control System, RCS is the
Revision Control System, and CVS is the Concurrent Version System.

Table 1.3: Some notable version control
systems.

worked systems and hence the ability to share the repository—still
singular and central—across multiple client machines.

ClearCase is an unusual system in that it provides multiple models
and concurrency controls, and a feature called dynamic views where
other users’ changes show up immediately, with no explicit update-
the-view action on the part of the user. The construction of the view
by which file versions are selected is done with programmable rule-
sets. The view rule-set file is also versioned, and it may refer to other In my view, this extreme level of pro-

grammability is something of a trap.
For instance, it can become very dif-
ficult to see why you got a particular
version of a file. Dynamic views also
seem to be a solution in search of a
problem: I prefer my working tree to
remain stable until I explicitly ask the
system to update it.

versioned rule-sets, so that various versioning rule-sets may affect
which rules are used to select a version from other versioning rule-
sets, which in turn can select more versioned rule-sets, and so on.

These systems all use file-level atomicity, which ultimately proved
inferior to commit-level atomicity. Many CVS users moved to Subver-
sion, which is very similar to CVS but features commits. ClearCase
has also added commits, but after I last used it, so I have no experi-
ence with them.

Much of the Open Source world has moved on to true distributed
VCSes. Git seem to be the most popular today [programmers.stackexchange.com
contributors, 2014b], overtaking Subversion in 2014 or 2015. Mercu-
rial appears to have a much smaller share of this market [program-
mers.stackexchange.com contributors, 2014a], but I include it here
because it has generally similar abilities and features and it is instruc-
tive in its contrasts. If you can use Git, you can use Mercurial, and
vice versa. Some widely used software is maintained in each system
today,29 so it is good to know both. Yet the two systems, otherwise 29 Besides Git and Mercurial themselves,

which are each maintained in them-
selves, many open-source systems are
maintained in Git or are mirrored on
GitHub. The original C versions of
the Python language were maintained
in Mercurial at the time I started this
book, but have since been moved to Git.

so similar, encourage very different usage patterns. I make no fur-
ther remarks on Subversion, in part because it uses a quite different
model, and it is of course not distributed. I have not used Bazaar and
maybe should not have it in the table (heh).

Distributed, commit-based VCSes appear to be the path into the



34 distributed version control with git and mercurial

future. The distributed nature of their repositories is a key feature:
one simply clones an existing generally-accessible repository and
begins working. Changes (changesets and/or snapshots) can be sent
back to other users and other repositories in many ways, but again
a key point is that the user or group who made a clone can simply
publish their modifications in a new, generally-accessible repository,
allowing the original authors to take or reject those modifications,
and providing the modified versions to other users. We’ll see later
the gritty details of this process, which are slightly different in Git
and Mercurial.



2
Git, Mercurial, and graph theory

Most revision control systems require that commits are stored in
branches in a one-to-one fashion. If we exclude merges, these com-
mits form a tree. Trees are well-behaved and present no real issues
to branching and merging. Mercurial behaves like this, and its users
might be tempted to ignore this chapter. However, the presence of
merge commits convert a branch tree into a graph, which has at least
one surprising (if rare) consequence. Mercurial allows you to work
with the graph when necessary—admittedly not as common an oc-
currence as with Git.

Git, on the other hand, starts you out with more generalized
graphs, with commits not neessarily bound or limited to any one
branch. Git chooses not merely to expose this, but to make it a cen-
tral facet of everyday use. Thus, to use Git effectively, we need to
cover:

• what a graph is, specifically a directed acyclic graph or DAG;

• the in-degree and out-degree of a node in a DAG;1 1 You won’t need to remember the exact
terms, but will need this concept.

• the notions of predecessor, successor, and topological sorting;

• what it means for a node to be reachable;

• and for merging, the concept of a lowest common ancestor.

You should have a good working knowledge of these by the end of
this chapter.

Graphs, directed graphs, and cycles

A graph is simply a collection of nodes and edges that connect these
nodes. Mathematicians usually use the word “vertex” rather than
“node”, writing this as G = (V, E), meaning G—the graph—is de-
fined by two sets2 V (the vertices) and E (the edges). We’ll mostly 2 In our initial graph, the edges are

technically a multiset.stick with the word “node”, except when using formal math notions.



36 distributed version control with git and mercurial

The nodes, which we’ll draw as circles here, represent things that
can be connected, and the edges—lines between the circles—connect
them up. In our case, the edges will eventually connect commits, but
let’s begin with edges that represent bridges over a river.

b

a c

d

Figure 2.1: A multi-graph for Königs-
berg.

A graph with multiple edges connecting the same nodes is called a
multigraph. This kind of graph was first formalized by Leonhard Eu-
ler in 1736, to tackle the famous Seven Bridges of Königsberg prob-
lem. Here the nodes represent landmasses: the north and south sec-
tions of the city, divided by the Pregel River; and two islands within
the river. The edges represent bridges connecting each landmass. The original problem was to devise a

walk through the city, starting on any
of the land-masses, that crossed each
bridge exactly once. Euler proved that
there was no such walk: you must skip
at least one bridge, or cross at least one
bridge twice.

In Figure 2.1, node a is the western island. It has two bridges that
lead to the northern part of the city b, one bridge to the eastern is-
land c, and two bridges to the southern part of the city d. The eastern
island also has one bridge linking it directly to the north and one
more directly to the south. The edges—the bridges—provide a way
to cross from one node (landmass) to another.

For instance, from the north (node b), we might cross either bridge
to the western island a, and from that island we might cross either
of the other two bridges to get to the southern main landmass d.
We may cross any of these bridges in any direction, allowing us to
reverse our path (or choose any other, of course) to go northward.

Königsburg, which was in Prussia, is now named Kalingrad and
is part of Russia, and two of the bridges are gone. In particular, the
western island now has only one bridge going north and one going
south. (The lost bridges were destroyed during World War II, in 1941,
when Lenin ordered bombing of Königsberg. Some of the remaining
bridges were eventually rebuilt as well, but there are still only five
bridges today.)

Removing redundant connections like this produces a simple graph. In a real city, these bridges are of course
not actually redundant—they provide
routes around traffic problems, for
instance—but let’s just go with it.

Unless otherwise stated, mathematicians usually mean “simple
graph” when using the term “graph”, and we will deal only with
simple graphs below.

b

a c

d

Figure 2.2: Simple graph corresponding
to Figure 2.1.

A path through a graph is simply a walk from any one node to
any other node, using the edges between nodes to make the traversal.
For instance, using the graph in Figure 2.2, to get from the northern
landmass b to the southern d, we have four options: cross to either
island and then to our destination, or cross to either island, then to
the other island, and finally to our destination. (Some definitions
allow a path to loop back on itself, i.e., to walk through a node more
than once. For our purposes this is not helpful so we will disallow it.)
The length of a path is the number of edges traversed.

A directed graph is a graph in which all the edges are one-way
links—arrows, if you will, or one-way streets in a city. If all of the
Kalingrad bridges were one-way, they might form a directed graph



git, mercurial, and graph theory 37

like that in Figure 2.3. A path in a directed graph must traverse the
connections in the direction of the arrows, so in this case, to get from
b to d, we could no longer go via island a, but only island c.

b

a c

d

Figure 2.3: Directed graph.

b

a c

d

Figure 2.4: Mixed graph.

If only some lanes on one of the Kalingrad bridges are closed,
however, we might get a graph like the one in Figure 2.4: Now we
can avoid island c when going from b to d via island a, but to get
from d to b, we must pass through island c. This graph is called mixed
and the directed edges are called arcs, to distinguish them from the
two-way edges. For our purposes later, we will use only directed
graphs and hence won’t need to distinguish between edges and arcs.
Some people like to maintain this distinction even with directed (un-
mixed) graphs, and we will do so for the rest of this chapter. (Later,
though, we’ll be calling our arcs “parent links”.)

The degree of a graph node is simply a count of its edges. With
a directed graph, we split this into in-degree and out-degree: the in-
degree is the number of incoming arcs and the out-degree is the
number of outgoing arcs. A node with in-degree 0 is called either a
root or a source, and a node with out-degree 0 is called a leaf or sink.

Two nodes in a graph are called adjacent if the shortest path be-
tween them traverses a single edge or arc. In a directed graph like
Figure 2.3, these adjacent nodes have a predecessor and successor rela-
tionship.3 The defintion of predecessor and successor is very simple: 3 Some prefer to call this “direct pre-

decessor” and “direct successor”, and
may call d a “transitive successor” of a
since we can walk from a through c to
d. We do not need this fine a distinc-
tion, but keep it in mind when using
directed graphs in other applications.

One node is a predecessor of another if it is on the "before" side of
the arrow, and the other node is then a successor of the first node,

Need better adjectives than "before" and
"after"...

because it is on the "after" side. In Figure 2.3, nodes b and c are suc-
cessors of a because there is an outbound arc from a to both b and c.

A cycle is a path through a graph, starting at some node, that re-
turns back to the same node without reusing an edge. The cycle

Exercise 2.1: Does the “do not reuse an
edge” constraint matter in a directed
graph? Remember that a path cannot
traverse the same node twice.

is described by the nodes in the path without regard to which one
comes first, so for instance, in Figure 2.2, the cycle a → b → c → a is
the same as b→ c→ a→ b: these only count as one cycle.

Exercise 2.2: How many cycles are
present in Figure 2.3?

b

a c

d

Figure 2.5: Directed, acyclic graph.

An acyclic graph is simply a graph with no cycles. When the graph
is both directed and acyclic, we can use the predecessor/successor re-
lationships to perform a topological sort, resulting in a node sequence
in which all predecessors are listed before their successors. (This is
impossible in a cyclic graph: for instance, in Figure 2.3, a must be
listed before both b and c, and c must be listed before d, but d must
be listed before a. To perform a topological sort on a cyclic directed
graph there must be a way to break all the cycles. There is not neces-
sarily any preferred way to break cycles, but in this particular case,
breaking the link from d back to a produces the graph in Figure 2.5,
which suffices: now a, b, c, d is one—and in this case, the only—valid
topological sort for all the nodes in the graph.) Since our Git and Exercise 2.3: If we remove the b → c

link in Figure 2.5, how many valid
topological sorts are there?

Mercurial commit graphs are acyclic, there is always at least one



38 distributed version control with git and mercurial

valid topological sort.
In a graph, paths also determine connectivity: two nodes are con-

nected if there is a path between them. Connectivity and its corre-
sponding paths also implies reachability: if one node is connected
via some path to another, the second node is reachable from the first
node, by walking that path. There may be multiple paths; we need
only one to declare reachability. Exercise 2.4: If node r is reachable from

node s in an undirected graph, is node s
reachable from node r?

The graph as a whole is called connected if every node is reachable
from every other node. In an undirected graph, the edges connect-
ing nodes are symmetric, so there is no concern about the strength
of the connection, but for a directed graph, this connectedness prop-
erty is divided into strong and weak: the directed graph is said to be
strongly connected if every node is reachable from every other node
without cheating (going backwards through an arc), or weakly con-
nected if every node is reachable from every other node only once we
allow going the wrong way on the one-way streets or bridges.

Any nontrivial DAG is at most weakly connected. The DAGs
we use to represent commits in a repository are typically weakly
connected, but disconnected graphs are allowed.4 Our DAGs also 4 Generating disconnected graphs

and multiple roots in Git version 1.7.2
and later is easy; it’s more difficult in
Mercurial.

normally have a single root commit (from which all other commits
descend), but multiple roots are permitted.

Exercise 2.5: Do multiple roots imply
disconnected graphs? What about the
reverse?Lowest Common Ancestor

v

w

Figure 2.6: Tree LCA.

The Lowest Common Ancestor problem was originally applied to
(and named for use with) trees. Informally, to find the LCA of two
distinct nodes v and w in a tree, we start with both nodes and work
our way upward towards the root. Where these two paths join to-
gether, we have common ancestors, and the lowest—i.e., furthest
from the root, closest to branch tips—of these is the LCA. This is
pretty easy to visualize; see Figure 2.6. The common ancestor nodes
are in grey, and the lowest is solid black.

The Lowest Common Ancestor (LCA) of two nodes in a DAG is
not as easy to see, nor indeed to define. Here are two equivalent
formal definitions from Bender et al. [2005]:

x y

Figure 2.7: DAG LCA.

Definition 1. Let G = (V, E) be a DAG, and let x, y ∈ V. Let Gx,y be
the subgraph of G induced by the set of all common ancestors of x
and y. Define SLCA(x, y) to be the set of out-degree 0 nodes (leafs)
in Gx,y. The lowest common ancestors of x and y are the elements of
SLCA(x, y).

Definition 2. For any DAG G = (V, E), we define the partially ordered
set S = (V,�) as follows: element i � j if and only if i = j or (i, j)
is in the transitive closure Gtr of G. Let SLAC(x, y) be the set of the
maximum elements of the common ancestor set {z|z � x ∧ z �



git, mercurial, and graph theory 39

y} ⊆ V. The lowest common ancestors of x and y are the elements of
SLAC(x, y).

We have not covered everything needed to properly understand
either of these definitions, but there is a convenient informal (albeit
slightly flawed) definition we can use: The LCA of two distinct nodes
is the common ancestor of those nodes that is closest (has the shortest
path) to them. That is, we measure the path length k from x or y to a
candidate ancestor, and find the smallest k. Exercise 2.6: One flaw is that we use

a single path length metric k. Try
rewriting this informal definition using
two path metrics kx and ky. Are there
more flaws?

If multiple nodes have shortest paths, they are all LCAs. This is
the case in Figure 2.7: both of the immediate predecessors of node y
are lowest (their path lengths to x and y are 1). This cannot occur in a

Exercise 2.7: In a DAG G = (V, E)
with |V| vertices (nodes), what is the
maximum possible number of LCAs of
any given pair of vertices? (|V| denotes
the vertex count.)

tree: two distinct nodes in the same tree always have a unique LCA.
Note that the LCA may be one of the nodes itself. For instance, in

Figure 2.6, the LCA of w and its parent node (v’s sibling) is simply
the parent node. Similarly, in Figure 2.7, the LCA of x and the left-
most mid-row node is the leftmost mid-row node. If the LCA is one
of the nodes, it is unique.

Aside: graphs are everywhere

Graphs and graph theory—including concepts like reachability and
path lengths—are, quite unsurprisingly, used in GPS systems that
provide directions. However, they also turn up in both computer and
social networks. Even the neurons in your brain can be represented
by a directed graph: outgoing arcs from each node (neuron) are ex-
pressed physically as synapses, which connect to the next nodes in
the graph. (These use weighted edges, as some inputs are more signif-
icant than others, and some inputs are actually inhibitors, i.e., have
negative weights. One must also weight each edge dynamically due
to neurotransmitter fatigue.)

Commit DAGs

Figure 2.8: Commit DAG.

Compare Figure 2.8 with Figure 1.7. The new figure lacks the branch
name labels and the letter codes, but the real key difference is that
we have reversed all the arcs. That is, the newest—most recently
added—nodes point back to their ancestors. This goes against the
normal graph notation, so we call these parent and child relation-
ships instead. In this case, the merge is the newest node, and we’ve
drawn it dashed, in the midst of being added. Its outgoing arcs will
point to its parents—two in this case, since it is a merge commit.
These parent commits do, and in fact must, exist during the creation Exercise 2.8: Prove that when we start

with this kind of commit DAG, and
add a new commit that obeys the
rules “outgoing arcs point to existing
(parent) nodes and no existing node
is changed”, the new graph remains a
DAG.

process.



40 distributed version control with git and mercurial

Note that we make no changes to any existing node, nor to any
existing arc, when creating the new node. If we had arcs going from
parents to children, adding this particular merge would require ei-
ther modifying the two existing parent nodes, or keeping the lists
of all arcs separate from nodes. This backwards method, with child
nodes pointing to their parents, allows us to keep the arcs (parent
links) together with the commit, while keeping all existing commits
read-only. The fancy word for this is that they are immutable. (Later,
we will see how this “keep parent links with each commit; existing
commits are immutable” rule provides integrity checking as well as
speed.)

Commit graphs, commit ordering, and reachability

We are finally ready to address a key difference between Git and
Mercurial. Recall the earlier question from Chapter 1 about locating,
identifying, and relating commits, and moving commits from one
branch to another. In Mercurial, commits are permanently affixed to
just one branch. Some of these commits may have in-degree 0, i.e.,
may be at the leafy ends of branches. Mercurial calls these heads.5 We 5 In a normal DAG, we would look

at out-degree rather than in-degree:
nodes with out-degree 0 are the leaves
in our borrowed formal definition 1.
Our commit DAG arcs have all been
reversed, so we change our viewpoint.
The word “leaf” came from the pre-
reversal view, but we continue to use
it here: Git calls a commit with out-
degree 0 a “root commit,” so calling
the other ends “leaves” is reasonable
enough. Git doesn’t normally bother
with a term for them, but for now, we
need a concise way to talk about them.

locate them by their branches; they define the ends of those branches.
Since each commit records its parent commit identifier (or two IDs
in the case of a merge), we can use these heads to reach every other
commit in the branch (or indeed, in the entire graph). The DAG
paths to the other commits give us their relative relationships.

Of course, Mercurial also gives us short sequential numbers for
each commit, and obviously 747 comes right before 748, making it
look easy. However, even in Mercurial, two commits on the same
branch, even if consecutive, may not have any parent/child relation-
ship. For instance, commits 747 and 748 might both be heads on that Exercise 2.9: Does traversing Mercu-

rial’s commits in sequential-number
order produce a topological sort? Why
or why not?

branch. They will both be children of some previous commit, such as
746, but the branch may fork internally. (This most often occurs when
picking up someone else’s work with hg pull .) We will see how to
resolve this later; although the terminology changes, the method is
the same in both Git and Mercurial.

Git uses a radically different scheme. Commit nodes do not retain
branch information. They do retain their parent commit identifiers,
just as Mercurial’s do, but finding all leaf commits requires trawl-
ing through the entire repository.6 To speed this up, Git provides a 6 There are several maintenance Git

commands that do this, and they take
some time to run in larger repositories.
Users normally never need to run these
on their own, though.

general form of external reference in a data structure separate from the
graph itself. These external references include all of Git’s branches
(and Git’s tags, and numerous other forms as well).

Git calls the commit to which a branch name points a tip commit.
Git’s branch names do not have to point to leaf nodes, and more than



git, mercurial, and graph theory 41

one external reference may point to any given node (including leaf
nodes). In effect, each external reference adds one incoming arc to
its node. This provides reachability to (some) leaf nodes, but is also
the reason a commit may be on more than one branch.7 These reach- 7 It may be better to think of commits

being contained within some branches.
Git has commands with --contains

options to see which branches and/or
tags contain particular commits.

able leaf nodes get us to the remaining reachable nodes, just as in
Mercurial. Unreachable leaves—nodes with in-degree 0, after adding
external references—may be deleted at any time.8

8 Git’s garbage collector, or GC, does
the deletion. It obeys rules that protect
items for a while, until they either get
referenced or age out, so “at any time”
is not quite true. You can also disable
the automatic GC.

The result is that when drawing a Git DAG, we may have multiple
branch names pointing to one commit, and we may have commits
that (seem to) have no names pointing to them. We will say more
about this later. For now, let’s revisit Figure 1.6 with Git in mind. We
move the branch names to the right, and each branch name points
to the tip of that branch. To emphasize that the position of a commit
node has little to do with which branches contain it, we may draw
them anywhere convenient. The root node is contained within every
branch, so there is no reason to prefer the row labeled master. To
show how one commit can be two different branch tips simultane-
ously, or a branch tip commit may occur in the midst of a commit
chain, we add two more Git branch-names: A points to the same
commit as master, and B points to a commit in the middle of the
release-v2 branch. (These names are meant to be illustrative, rather
than immediately useful, though A would be a good place to start de-
velopment of a new feature that is not yet ready to be part of master.)

A

master

customize

release-v3

release-v2

B

Figure 2.9: Git variant of Figure 1.6.

This brings up the other question from Chapter 1: what, precisely,
is a branch? The answer is much easier in Mercurial than in Git. We
can follow part of a commit DAG, starting from a (Mercurial) head
on that branch, until we find the commit whose parent is on some
other branch. Back in Figure 1.6, the leftmost node on release-v3

is the first commit on that branch and the rightmost (head) commit
is the last so far. The branch grows, with the head moving right,
whenever we add a new commit onto that head. In Mercurial, then,
each branch is its own separate entity, with the name you used when
you created it, containing and consisting of an exclusive and specific
(but growable) set of commits: all the commits that are made on that



42 distributed version control with git and mercurial

branch.
In Git, the branch name is its own separate entity, but it is not

synonymous with an exclusive and specific set of commits. The word
“exclusive” is the obvious point of failure, but we must also consider
the way Git is used in practice.

· · · release

hotfix

Figure 2.10: Git release with hotfix.Suppose we create a hotfix branch from a release branch, and
make one commit on hotfix (and prove that it fixes the bug). During
that process, someone else made a new commit on release, so we
merge hotfix back into the release branch, as in Figure 2.10. What
does “the hotfix branch” mean now? Does it have just one commit,
as it would in Mercurial, or does it—as git branch --contains

contends—extend all the way back to the root? Is that hotfix commit
part of the release branch?

Now that hotfix is merged back in, Git also allows and even en-
courages us to delete the name hotfix entirely (hence its rather tenta-
tive status in the figure). The external label release makes the merge
commit reachable, and the merge commit makes the hotfix commit
reachable, so the external label hotfix is superfluous. In Git’s terms,
the release branch contains the hotfix commit, so now we may as
well say that this commit is on the release branch (and no longer on
the now-deleted hotfix branch).

In Mercurial, we cannot delete the hotfix branch. It remains clear,
now and forever, that hotfix was created from release and has just
the one commit on it. In Git, we can—and in practice, often do—
delete the hotfix branch name, but the underlying data structure—
the little branch-and-rejoin sequence in the DAG—remains clear, now
and forever.9 I contend that when using Git, the word “branch” has a 9 Or until rebased; but this is a separate

can of worms, to be opened later.dual meaning: users sometimes use “branch” to mean the branch
name, and sometimes to mean some—often vaguely-specified—
portion of the commit graph. That is, Git’s users know they only
want some of the commits that Git says are contained in the branch,
but are not sure how or why the commands they give Git actually
select the ones they want. The branch name points to the last commit
of this vaguely-specified branch, but in the most general case, it is
impossible to identify the desired first commit. Git users often wish
to find such a first commit, but Git insists that this is unnecessary. We
will see in a moment how Git uses reachability and set operations to
make it unnecessary.

Some users argue that this proves Mercurial to be superior to Git,
because we can always trace individual commits to specific branches.
Some users argue that this proves the opposite, for the same reason,
noting that a statement like “commit 1417ae2 was made on hotfix”
has no (or even negative) value several years later. I somewhat regret-
fully agree with the latter group, but find that this makes Git usage



git, mercurial, and graph theory 43

more difficult and error-prone at first, because users have vaguely-
defined notions of branches, vague (if any) notions about commit
DAGs, and don’t want to have to express subsets all the time (see the
next section). Mercurial’s branches are initially just right, but over
time, the branch names become very cluttered. Mercurial’s branch-
closing feature, which hides the name from normal use, does the
trick initially, but the hidden branch name still exists: you must either
invent a new (often rather awkward) name or re-open the old branch,
and this is where the old branch suddenly has negative value.

Understanding the way Git uses branch names within the DAG is
crucial to understanding Git, so let’s repeat it:

• Git calls the commit to which a branch name points a tip.

• Git’s branch names do not have to point to leaf nodes.

• More than one external reference may point to any given node
(including leaf nodes).

Refer again to Figure 2.9.

Subsetting the commit DAG

Given these commit graphs, we can and will extract interesting
commit-node subsets using reachability and/or branch names. The
one most users want the most often is “all commits on a branch”.
That is, the user says “show me the commits on bug123”. In Mer-
curial, this does exactly what users want—or rather, it does until a
branch name is accidentally re-used.10 With Git, however, we return 10 This mostly occurs when different

developers with different repository
clones invent the same names for
different purposes. Mercurial won’t
let you accidentally re-open a closed
branch, but it’s very easy for both
Alice and Bob to name a branch fix

or for-carol. Since branch names
are both permanent and global (see
Chapter 4), collaboration requires
discipline with branch names. There is
an extension named “convert” that can
help in cases of branch-name re-use.

to the problem that users initially state their desires too vaguely,
thinking that Git works like Mercurial. Let’s see how we switch from
vague to precise.

Since our commit DAG uses parent links, reachability implies ances-
try: if node p is reachable from node c, p must be a parent, grandpar-
ent, or greatn-grandparent, of c. We can therefore automatically select
the set of all ancestors of any given commit simply by selecting that
commit with ancestry enabled. In Figure 2.11, selecting node y (for
yes) with ancestry results in choosing all the nodes colored in green.
Many Git commands do this by default, including both git log

and Git’s main internal workhorse, git rev-list . As a rule, Git
commands that make the most sense with a single revision select
their nodes without including ancestors, while Git commands that
make the most sense with ancestry select with ancestry, and have a
--no-walk flag to suppress the ancestor inclusion.

y

Figure 2.11: Ancestry selection.

In Git, we will regularly use set subtraction on the nodes in these
sub-graphs. We also may use set union. (The resulting sub-graphs



44 distributed version control with git and mercurial

remain DAGs and can therefore be sorted topologically as well, al-
though they may become disconnected.) For instance, in Figure 2.12,
we again ask for all ancestors of node y, minus all ancestors of node
n (for no—and as with y, the ancestor set includes n itself). The result
is again the nodes shaded in green, but this time the set subtraction
operation has turned two previously-green nodes red.

n y

Figure 2.12: Set subtraction.

...

master feature

Figure 2.13: Delimiting a branch via
subset.

This may not seem terribly useful at first, but this kind of ancestry
set subtraction is so common in Git that Git has a special syntax for
it: A..B (where A and B are any valid commit identifiers). This is reg-
ularly used to request “commits I made on my local branch B since
commit A”, and since it resembles some programming languages’
interval formats (e.g., if i in [1..5] to test for an integer between
1 and 5 inclusive), it looks very sequential, misleading users into
thinking of it as Mercurial-style ancestry selection. Once we properly
understand it as set subtraction, however, it makes sense that this
excludes commit A itself. Figure 2.13 illustrates how master..feature

works in Git. By selecting all commits contained in feature but then
excluding all commits contained in master, we get precisely what we
wanted: commits that are only on the feature branch.

(Did we just use the word “branch” in the Mercurial sense? No:
we said we want commits that are only on that branch, and not on
master. Most red-and-removed commits—at least three, assuming
the vertical dots represent at least one—are on both branches. It’s true
that the first two red commits are only on master, so they did not
have to be removed, but marking them red for a moment is harm-
less. We used the name master because the point at which the two
branches join is precisely the point at which we want to stop follow-
ing the ancestry of feature.)

One issue here is that you need to know which commit (or branch
name) to select for ancestry subtraction. In particular, how did we
know that master was the one to use on the left of the two dots? Git
has a slightly hacky answer to this using the notion of an upstream.
We will see more on this in Chapter Something.

Since Mercurial limits commits to be on just a single branch, it
does not need these set operations as often. They are still needed
if you use bookmarks to implement Git-style DAG-based branches
within a Mercurial branch,11 or, e.g., when you are using revision 11 If, instead of using branches, you

track all your commits with bookmarks
pointing to multiple heads in default,
Mercurial ends up working much like
Git.

ranges to specify a large group of commits (as in -r1200:1499) and
want to further restrict them to those within a particular branch.
Mercurial has a different—richer but more complex—syntax for its
set operations.

For instance, Git’s master..feature can be expressed in Mercu-
rial as (ancestors("feature") - ancestors("master")). The two
ancestors perform Git-style revision walks, and we subtract the



git, mercurial, and graph theory 45

second set from the first.
Nonetheless, Mercurial offers the same A..B syntax as Git, with

a different meaning: select nodes that are descendants of A (includ-
ing A itself) and ancestors of B (including B itself). For simple (non-
branching, non-merging) chains of commits, the Git and Mercurial
syntaxes select the same commits except that Mercurial includes com-
mit A. Mercurial has an alternative spelling, A::B, and I find that
when switching between the two systems, sticking with this second
syntax reduces errors.

Symmetric differences and merge bases

...

A B

Figure 2.14: Symmetric difference.

Mercurial users typically (and correctly) point out that all this messing-
about with set subtraction, and indeed the ability do graph-theoretic
operations in general, is unnecessary in everyday Mercurial use.
Moreover, Mercurial can do the same operations Git does, and many
more. For instance, Mercurial’s branchpoint operation—which se-
lects commits with multiple children—and Mercurial’s generalized
descendent selection is not built in to Git (though the git rev-list

command’s --merges selects commits with multiple parents, and
--ancestry-path A^@..B or --ancestry-path --boundary A..B ac- Exercise 2.10: The A^@ syntax is slightly

tricky, and --boundary is also tricky.
Since these details are Git-specific,
we will leave them to Chapter XX.
Meanwhile, what are some reasons not
to just use the hash ID of A’s parent as
the left operand for the set subtraction
A..B?

complish the same thing as A::B in Mercurial).
There is, however, one case where Mercurial’s syntax is slightly

weaker than Git’s: Git offers the special syntax A...B12 to produce

12 Note that this syntax has three dots, vs
the usual two.

a symmetric difference, which is defined as the set-union minus the
set-intersection of the ancestors of A and B.13 We may think of this as

13 Mercurial users can therefore
construct the symmetric differ-
ence using Mercurial’s built-in
functions: (ancestors("A") or

ancestors("B")) - (ancestors("A")

and ancestors("B")).

commits on (or contained-in) either A or B, but not both, as shown in
Figure 2.14.

This symmetric difference is particularly useful when we wish to
see which commits in one fork mirror similar commits in the other
fork. Git’s git rev-list command has a number of options for
examining or further subsetting commits in the symmetric difference.
These are used to see, for instance, whether particular fixes have been
cherry-picked back into a release. (We’ll see what cherry-picking—
Mercurial calls it grafting—is later.)

Note that when we perform a symmetric difference, the first com-
mit in any excluded chain is a Lowest Common Ancestor. The lowest
red node in Figure 2.14 is thus the LCA. This LCA is also called the
merge base, as it’s the point in the ancestry where the two branches
join.14 Findind the merge base (or bases) is a critical step in doing 14 Note that we have just used the word

“branch” in a rather vague manner. In
this case, as in most, we will assume
that it’s obvious what we mean—and if
not, you should ask!

merges. Some verson control systems require users to find merge
bases manually for every merge. Keeping a commit DAG allows both
Git and Mercurial to find them automatically.

Recall that in a simple tree like this case, there is just one LCA.



46 distributed version control with git and mercurial

More complex DAGs like those in Figure 2.7 may have several. If
there are multiple LCA nodes, all of them are merge bases. These are
the “surprising consequence” mentioned at the top of this chapter.
We can pick one arbitrarily, but this may lead to errors when we do
the merges. Git handles this case slightly better than Mercurial, as
we will see later. Fortunately, these are somewhat rare in real commit
graphs.

Commit graph vs commit content

This chapter has been all about the commit graph. For any VCS to
be any use at all, however, each commit must correspond to a par-
ticular source version. The VCS must give you some way of viewing
or extracting each commit, as well as comparing commits. This is
true regardless of the VCS’s underlying storage model (snapshots vs
changesets). This means you can—and should—think of each node in
the commit graph as giving you access to a complete snapshot.

In other words, the graph itself is about the relationships between
commits, while each node within the graph stores the metadata for a
particular commit and a committed source revision.

This is true even for merge commits: a merge commit has a final
source tree result, which may not be the same as the sum of change-
sets. As a particularly extreme example, suppose we were to merge
two branches but tell the VCS not to make the commit yet. Then we
randomly replace some files, and commit the result. The merge, in
this case, has some files whose changes—as compared to either par-
ent version or the merge-base—have nothing to do with the changes
made in the branch.15 This is not meant to suggest that you should 15 This is sometimes called an evil merge.

do this—in fact, it’s usually a bad idea, as we will see later. But it’s
always possible, and there are situations that might call for it.

Since a merge has (at least) two parents, each merge also gives
you access to (at least) two changesets: you can compare the merge
to either parent to obtain a changeset.16 This fact matters a great 16 Since Mercurial stores changesets,

you might wonder how it can store two
changesets for a merge. The answer
is that it stores just one changeset,
comparing the merge commit’s contents
against the previous commit in the
merge commit’s branch. To get a
changeset against the other, merged-in
commit, Mercurial must produce it
dynamically upon request, much as
Git does for every commit-to-changeset
operation.

deal later, especially in Git, if and when you attempt to cherry-pick
a merge commit. In Chapter 8, we will go into much greater detail
about the merge process: merging as a verb, to merge. This chapter’s
merges are adjectives or nouns: a merge commit or a merge. For now,
let’s leave this part here, and move on to Chapter 3 to look at the
contents of commits, whether or not they are merge commits.



3
Commits, files, diffs, and merges

As we just saw in Chapter 2, the commit graph is what determines the
history stored in a repository. This is not necessarily the history of
a specific file within the repository. Instead, it’s the history of every
commit ever. We should now take a look at the theory and practice
of using the contents of each commit. That is, what is it that is in a
commit, and how do we compare one commit to another? How do
we merge branches whose contents have diverged? By the end of this
chapter, you will have a better idea of what a commit does for you;
you will know what a diff is, how to read one, and how to compare
one commit to another; and you will have a good high level strategic
view of what merges are about. If you care to dive into the details,
you may learn how diffs work internally as well.

What’s in a commit

Git and Mercurial have somewhat different metadata (and very dif-
ferent underlying storage mechanisms), but both agree to a large
extent as to what a commit is: it is a unique entity, with an identifier
(or several) to locate it. Each commit has one or more parent com-
mits, and some metadata, including the author of the commit, when
the commit was made, and a log message. Most importantly, though,
these commits allow you to access—check out—any version of any file
you ever committed.

It’s worth considering here that some commits will have files that
others do not. For instance, once you add and commit a new file that
never existed before, no ancestor of the current commit—no earlier
commit—will have the file. If you remove a file and commit, the new
commit and its descendants will not have that file. So we must note
that checking out some specific commit gets you the files saved in
that commit, in the form they had at that time. If you are moving from
one commit that has some file to another commit that lacks it, the
VCS must remove that file. This means you can, in effect, go back in



48 distributed version control with git and mercurial

time in your project, and if you go far enough back—to your very
first commit—you will have only the files that were in that commit.
However, all the files are in the repository, and when you return to the
present, all the modern files return, in their modern form.

We will see much more about the VCS-assigned Globally Unique
Identifier hashes in Chapter 4; for the moment, let’s continue to treat
them as magic. I will write them as seven letters here. This works in
both Git and Mercurial, so except for these hashes being made up,
these examples are realistic.

Git and Mercurial automatically get us the latest commit for some
particular branch when we use a branch name, so we might run
git checkout master or hg co default to get the latest commit

from the main branch. Let’s assume for the moment that this is com-
mit bcdef01, so that this check-out step makes the work-tree match
the stored content for bcdef01. Our work-tree now has the appro-
priate version of each file from that commit, and we are ready to
work on it. If we need the contents of an earlier commit a234567,
we check that one out, perhaps by ID: git checkout a234567 or
hg co a234567 .1 This method—using a raw hash—works in both 1 The exact spelling of a checkout

argument has some side effects in Git
that do not apply in Mercurial. We’ll
see more about this, and other ways to
find or name commits, later.

Git and Mercurial for many purposes, and we’ll use it now for illus-
tration, without worrying about how we found these hashes, or other
Git-specific checkout details.

Files have names

Git and Mercurial both find files by path names (or pathnames), such
as README or dir/file.txt. To the VCS, a path name is essentially
an arbitrary string, with slashes separating directory components
from the final base file name. The path name is simply the full name, You may see the term base name used

elsewhere to include the result of also
stripping an extension such as .txt

from path/file.txt.

including all leading directory components. Except for the slashes
and a terminating ASCII nul (0x00) byte, the VCS literally imposes
no restrictions on these path names. However, the operating system
(OS) that you use may impose its own restrictions.

The directory components of file names form a tree structure,
just as we saw in Chapter 1. In general, in both Git and Mercurial,
referring to a directory automatically means all the files and sub-
directories within the directory. This process is recursive: If there is both
a dir/file.txt and dir/second.txt, and a dir/sub sub-directory
with additional files, simply writing dir directs the VCS to use every
such file (including files in dir/sub/deeper/ if that exists).

One common OS, Windows, uses backslash instead of forward
slash in path names. Git and Mercurial essentially “prefer” forward
slash internally but will convert (in either direction) for you, so you
can use whichever you prefer.



commits, files, diffs, and merges 49

Both Windows and OS X® have case-retaining, but case-folding,
file systems by default. That is, if you create a file named ReadMe, and
then ask them to open or create a file named README, they re-use the
existing file. This same rule applies to directory names. This means
you literally cannot have two files or directories whose names differ
only in case. Linux and unix® systems, however, allow them.2 2 These are generally controlled on a

per-file-system basis. For instance, you
can set up case-folding file systems
on Linux, and fully-case-sensitive
file systems on OS X. The methods,
however, are beyond the scope of this
book.

Git and Mercurial only store files

Note that we make a clear distinction here between directories and
files. While both Git and Mercurial must provide for the existence of
directories, they do not, in a sense, store the directories themselves.
In particular, neither VCS will store an empty directory. This means that
you should arrange not to require this. As a simple workaround,
consider creating an empty file named .gitignore or .hgignore in
an otherwise-empty directory. These files have a particular use we
will see later, so your system should be able to ignore these “ignore”
files and have them not interfere with real work. The presence of
these files in a commit in an otherwise-empty directory will cause the
VCS to create the directory if necessary whenever you check out the
corresponding commit.

Character encodings

You will probably encounter, or yourself use, non-ASCII characters
in path names, such as a path named agréable/schön. We must now
take a short tour of character encoding. The base ASCII set consists of
byte-codes 0x00 through 0x7F. These correspond to the lower half
of the ISO-8859-1 or Windows CP-1252 character sets.3 Characters 3 These are all extensions of ASCII.

There are many more ISO-8859 sets
as well, all numbered, and any one of
them tends to be sufficient for most
European langauges, but only one at a
time. For instance, Czech uses letters
such as z with a caron or háček, ž, that
are in ISO-8859-2 but not ISO-8859-1. If
you choose ISO-8859-2 so that you can
spell žití (living), you lose the ability
to write French quotation marks or
guillemets, as in The Tenth Doctor likes to
yell «Allons-y!»

whose codes are between 0x20 and 0x7E are all displayable and rep-
resent single letter symbols, but even simple accented characters are
pushed up into non-ASCII codes 0x80 through 0xFF. Using charac-
ter sets such as Cyrillic, Greek, and especially Chinese often require
abandoning ASCII entirely.

The modern answer to this problem is Unicode, which attempts
(with some success) to provide a unique code for every symbol (and
a number of emoticons or emoji as well) used in every human lan-
guage. Unicode originally defined just over 60,000 symbols. This fit
well into a two-byte encoding, called UCS-2.4 Unfortunately, UCS-2 4 UCS stands for Universal Coded

Character Set. I don’t know why this
is not UCCS, but I speculate that it is
due to TLA (Three Letter Acronym)
Syndrome.

soon proved inadequate.
The Unicode standards currently define well over 100,000 sym-

bols. Unicode calls these code points. Modern Unicode has room for
exactly 1,114,112 (or 0x110000) such code points, which it divides
into 17 of what it calls planes, of 65536 (or 0x10000) code points each.



50 distributed version control with git and mercurial

In any case, this certainly requires more than two bytes to identify
each symbol: in fact, it would logically call for 21 bits, or 2 5

8 bytes.
Fractional bytes cause problems for many computer programs, so this
would have to be rounded to three full bytes. For other reasons that
seemed good at the time, though, the Unicode people actually went
straight to four bytes.

Unicode’s subsequent encoding, called UCS-4, still exists. It orig-
inally allowed 231 code points. (It might seem like this should be
232. Originally, though, half the space was reserved—and now much
more than half is reserved.) Of course, storing text this way would
make every file (or file name) quadruple in length, compared to their
original eight-bit ASCII or ISO-8859 encodings. Moreover, Unicode is
arranged so that the most commonly used characters fit in the orig-
inal UCS-2 space.5 The Unicode committees therefore standardized 5 The expanded space, using code

points 0x010000 through 0x10FFFF, is
used for some less-common Chinese,
Japanese, and Korean characters. It
also holds historical scripts, such as
Cuneiform, and the emoji.

numerous additional methods of encoding text.
One of these encodings, UTF-16,6 still uses two bytes per symbol

6 UTF stands for Unicode (or UCS)
Transformation Format.

but allows surrogates by which some of the extra values are wedged
into the available space, using two surrogate codes to stand for one
code point. In effect, UTF-16 is really a variable-length encoding:
using any of the surrogate codes indicates that this UTF-16 value is
the upper or lower half of a pair and must be immediately preceded
or followed by a pairing half. The surrogate values themselves are
divided into upper and lower ranges to ensure that it’s possible to
know which direction to move.

UCS-4 is now synonymous with another encoding called UTF-32.
It has one obvious advantage: no pair-decoding is ever needed. In
practice, these days UCS-4/UTF-32 is primarily used to store strings
temporarily in memory, so that indexing is simplified. To this end,
when Unicode is stored in UTF-32 / UCS-4 format, any surrogate
codes should be replaced with the corresponding single code point.

A third form, UTF-8, also uses a variable length encoding: code-
point values in the range 0x00 through 0x7f are encoded as a single
byte version of themselves. This has the advantage that all pure-
ASCII data is valid UTF-8 data. Code-points whose value is between
0x0080 and 0x07FF encode into two UTF-8 bytes, and those whose
value is between 0x0800 and 0xFFFF encode into three. The more-
rarely-used code points in 0x010000 through 0x10FFFF take four
bytes.7 While the variable-length encoding presents some minor 7 The encoding allows room for up

to six bytes, to represent all the orig-
inal UCS-4 code points ranging from
0x00000000 through 0x7FFFFFFF. In ad-
dition, UTF-8 can encode all the UTF-16

surrogates in three bytes, but they are
nominally forbidden as well: the data
stream should use the four-byte encod-
ing for the code point for which the two
UTF-16 values would be surrogates.

issues, it works very well in practice.
One problem with UTF-16 and UTF-32 is that files and other data

streams are typically presented as sequences of 8-bit bytes. To send
or receive a 16 or 32 bit value this way, you must pick which eight
bits go first. This is called endianness, with big-endian meaning that
you send or receive the most significant byte first. For instance, to



commits, files, diffs, and merges 51

encode the value 0x1234 you send 0x12 followed by 0x34. Little-
endian is the reverse: you send this value as 0x34 followed by 0x12.8 8 The names “big-endian” and “little-

endian” are a nod to Gulliver’s Travels
by Jonathan Swift.

UTF-16 and UTF-32 can both be either endian, and without a guide,
it is sometimes difficult or impossible to tell which endianness is
being used. Unicode therefore allows for a byte order mark or BOM
at the front of a data stream. This is simply the code-point 0xFEFF.9 9 The code point 0xFEFF represents a

zero-width non-breaking space, al-
though when it is at the front of the
data stream, it should normally be con-
sumed after determining endianness.
The byte-swapped code point 0xFFFE
deliberately goes unused.

If the first two bytes of a data file are 0xFE followed by 0xFF, the
file probably holds UTF-16-BE data: UTF-16 encoded in big-endian
format. If the next two bytes after 0xFE 0xFF are both zero, the file
is probably encoded in UTF-32-BE. If the first two bytes are 0xFF

followed by 0xFE, the file probably holds UTF-16-LE data: UTF-16

encoded in little-endian format. If the first four bytes are 0x00 0x00

0xFF 0xFE, the file probably holds UTF-32-LE data.
The encoding for UTF-8 is strictly ordered. It is also always pos-

sible to tell from any individual UTF-8 stream byte whether it is the
first byte or a continuation. As we already saw, all ASCII-compatible
code points in 0x00 through 0x7F encode to a single UTF-8 byte. All
other values encode as bytes in the 0x80 through 0xFF range, with
0xC0 through 0xDF being the first byte of a two-byte sequence and
0xE0 through 0xEF being the first byte of a three-byte sequence, for
instance. (All continuation bytes are in the range 0x80 through 0xBF.)
In UTF-8, the BOM is therefore unnecessary, but if present, it encodes
as 0xEF 0xBB 0xBF.

In the text below, we encode Unicode characters in the standard
recommended format: U+0041 is the code point 0x0041, which is an
uppercase A, for instance.

Pathname encodings

Both Git and Mercurial would like to believe that all pathnames are
encoded in UTF-8. This works fairly well in practice. For instance,
in UTF-8, only a literal slash matches the directory separator slash
(ASCII code 0x2F, Unicode U+002F). Windows uses UTF-16-LE en-
coding internally, but this is invisible in normal use. Other systems
mostly really do use UTF-8, since it mostly just works.

UTF-8 is, however, not perfect. For instance, ö may be represented
as either the three byte sequence 0x6F, 0xCC, 0x88, or as the two-
byte pair 0xC3, 0xB6. The first of these represents an ordinary latin

small letter o (Unicode U+006F)10 followed by a combining
10 The Unicode tables write these in
all-capital-letters shouty form, just like
this.

diaeresis (Unicode U+0308), and the other a single letter, latin

small letter o with diaeresis (Unicode U+00F6). As far as most
programs are concerned, these two file names are different, as they
are made up of different byte-sequences, but they appear identical
when displayed. OS X relies on Unicode Normalization Forms (of which



52 distributed version control with git and mercurial

there are four) to normalize (i.e., convert) everything to a single com-
mon format. That way, whatever might be displayed for whichever
byte-sequence you may get from elsewhere or enter at the keyboard,
whether you ask to open or create s, c, h, umlaut-o, n or s, c,

h, o, combining-umlaut, n, you get the same file. Linux and other
unix systems by default do not normalize these, so you can have one
file with each name.11 11 I don’t know what Windows does

with these.If you only make repositories on one operating system and only
use pathnames it finds acceptable, you are unlikely to run into issues
here. On Windows, you will never have both README and ReadMe. On
OS X, your pretty (schön) or pleasant (agréable) file will always en-
code into the system’s preferred UTF-8 sequence. When you distribute
a repository, however, the fact that your directory and file names are
frozen into commits12 means that extracting those commits under a 12 Technically, internally, they’re in

other, non-commit data structures in
both VCSes, but the effect is the same.

different operating system may cause problems.
Both Git and Mercurial have some kludges to attempt to work

around these issues. Their effectiveness depends on what, precisely,
is in the commits you would like to extract. If possible, you should
avoid this situation entirely. All these problems can be corrected
on Linux or unix systems, since the file systems are normally case
sensitive and the OS itself performs no Unicode normalization. Better
tools for this would, however, be useful.

Viewing file changes by comparing one commit to another

Given any single ordinary commit, our VCS should be able to tell
us what happened in that commit. Moreover, given any pair of com-
mits, our VCS should be able to show us the differences between
them. The case of viewing a single ordinary commit then reduces to
comparing that commit’s parent—its immediate ancestor—to that
commit. The verb for comparing two such items is diff, which comes
from the word “difference” and refers to the unix diff utility.13 13 The Wikipedia page for Diff_utility

describes the command as being writ-
ten by Doug McIlroy, and first ap-
pearing in 5th Edition unix in 1974.
See Hunt and McIlroy [1975] for a de-
scription of the algorithm used in this
original diff.

The original diff produced simple commands that would change
one file into another: delete one particular line here, insert a differ-
ent line there, replace a third line with a different third line. In other
words, the output of diff was a set of delta-compression instructions
(recall the brief discussion of delta compression from Chapter 1).
Context diffs were introduced in 2.8bsd, in 1981; these added sur-
rounding (context) lines, to make the diff easier to read and so that
someone manually applying a diff could tell what was supposed to
be in the nearby lines, i.e., whether the diff was still applicable.

In Chapter 1, we mentioned, however briefly, the notion of file iden-
tity. File identity is how we decide whether the kanga.c in commit
a234567 is the same file as kanga.c in commit bcdef01. It seems obvi-



commits, files, diffs, and merges 53

ous that two files with the same pathname must be the same file, and
usually they are—but we already noted that files also get renamed.
If our VCS is to track file history, it must have some way to decide
whether fur.h in commit a234567 is related to fur-and-scales.h

in bcdef01. Git and Mercurial use different schemes for this, but for
now, we may simply assume that both automatically and correctly
identify the files in the two commits.

If we know the two commit’s IDs, we can tell the VCS: “Please
diff a234567 vs bcdef01.” This Git or Mercurial diff, or difference,
is simply a commit-wide comparison of all files.14 In other words, 14 As we will see later, you can produce

subset diffs, but the norm is a full diff
for the pair of commits.

it shows everything that is required to turn the first commit into the
second commit. If the first commit is the parent, and the second is
the child, this “everything” is what the commit’s author changed before
making the commit.

Both Git and Mercurial show us a slight variation of what is called
the unified context diff format, which I think is best illustrated by
example. Note, however, that what we see here is not necessarily
how the author made the change; what we see is the VCS’s attempt
to summarize the result. We’ll take a look at what I mean here in a
moment.

What’s in a diff

At one point while writing this book, I noticed I had spelled the The actual example here is from Git,
but both VCSes display similar compat-
ible output, and Mercurial can—and in
my opinion, should—be configured to
produce more Git-like output.

word “grey” in “grey kangaroo” using the American rather than
Australian spelling. Since the kangaroo is Australian, I decided the
Australian spelling was more appropriate. I changed it and make a
new commit. The diff for the resulting commit looks like this:

diff --git a/plates.tex b/plates.tex
index 09939ca..3dfc610 100644
--- a/plates.tex
+++ b/plates.tex
@@ -15,7 +15,7 @@ that I took on a trip to parts of Australia in February of 2010
\end{plate*}
The kangaroo is probably the most widely known marsupial.
There are actually four species of large kangaroo:

-the red, the eastern and western gray, and the antilopine.
+the red, the eastern and western grey, and the antilopine.
There are also smaller tree-kangaroos and rat-kangaroos.

\begin{plate*}[h]

This diff shows what I changed in the form of a set of instructions: Exercise 3.1: These instructions are line-
oriented. How would you represent a
word- or character-oriented diff?

For now, just ignore the index line, and note that the a/ and b/ parts
merely denote the before and after—or more accurately, left and right
side—versions. We’ll get to the @@ line in a moment; this particular



54 distributed version control with git and mercurial

one is not very interesting. Meanwhile, in the source file plates.tex,
we may expect to find the three lines of leading context starting with
the \end{plate*} line. Then, the original line appears, containing the
word “gray”. In the new version, that line has been removed, and a
new line added in which the word is spelled “grey” instead. Below
that, we may expect to find three more lines of trailing context. This
is a total of seven (7) lines, which actually start at line 15, in both
the before and after versions of this one file. This is why both sets of
numbers between the @@ symbols read 15,7.

Let’s look at one more example diff, where I simply added several
lines to one file:

diff --git a/book.tex b/book.tex
index 1152990..5a06fec 100644
--- a/book.tex
+++ b/book.tex
@@ -43,7 +43,10 @@

\newcommand*{\filename}[1]{\textup{\texttt{#1}}}
\newcommand*{\branchname}{\texttt}

+\newcommand*{\remotename}{\texttt}
+\newcommand*{\rmtbranch}{\texttt}
\newcommand*{\hash}{\texttt}

+\newcommand*{\gitref}{\texttt}
\newcommand*{\command}{\texttt}
\newcommand*{\setting}{\texttt}

The lines beginning with @@ act as a header, marking each diff hunk,
telling us where the changes go and how many lines to expect in the
old and new revisions. If the VCS believes it knows the something
else relevant that might help us read the diff hunk, it comes after the
second @@; in this case, Git found nothing useful to include and left it
blank.

In this diff hunk, I added three lines, but not all in one location.
The header shows the line range: seven lines starting at line 43 in the
original text, ten lines starting at line 43 in the new version. After
that, the unified diff format gives three lines of leading context, two
added lines, one unchanged line, one added line, and three lines of
trailing context.

With an old style, non-unified context diff, we would get two diff
hunks here. The unified diff format unites these (hence the name
“unified”) into a single diff hunk whenever the leading or trailing
context can be combined, as in this case. If the added or removed
lines were sufficiently far apart, however, we would see multiple diff
hunks here too.



commits, files, diffs, and merges 55

A collection of file diffs makes a changeset

Each file-level diff is a delta.15 Remember also the distinction between 15 While this is a delta, it is not necessar-
ily the delta that the VCS stores, if the
VCS stores deltas in the first place. See
the remark below about binary files, for
instance.

changesets and snapshots from the same chapter, and that a change-
set is a set of file deltas.

The diff commands thus turn commits—or rather, a specific pair
of commits—into changesets, with one diff for every changed file.
Files newly added or removed are compared against a specially-
named empty file, so that all lines are either new or deleted (the diff
also notes that the file is new or removed, and with the Git format,
includes additional file-mode information when needed).

A changeset, which in text form is also called a patch, not only
allows you to see what you or anyone else did in the past, it also
allows you to send such changes to someone else, even if they do not
have a proper VCS, or are using some other VCS. These changesets
can be emailed for mass distribution, and some code-review systems
use or generate emailed patches.

Git, which stores snapshots, must produce this changeset on de-
mand. In fact, though, Mercurial produces the textual version of the
changeset on demand as well, in part because its internal delta for-
mat is not line oriented—it supports binary files, which do not break
up properly into lines—and in part in because it occasionally stores
a fresh copy rather than a delta anyway. Perhaps most significantly,
as we already mentioned, you may compare any commit to any other
commit, not just its parent.

You can diff any commit against any other commit

So far, we have only compared commits to their immediate predeces-
sors. More precisely, starting from the successor commit, we found
the predecessor, then compared the predecessor to the successor.
What happens if we reverse the order of the two commits? For that
matter, how did I obtain the diffs I just showed?

The commit with the kangaroo spelling change is c4071d9... and
its parent commit is is a4ca39f.... Armed with these IDs, one way
to get this diff is:

git diff a4ca39f c4071d9 or
hg diff -r a4ca39f -r c4071d9

(In Mercurial, these would have different hashes, but they would also
have shorter, repository-specific sequential revision numbers and we
could use hg diff -r 31 -r 32 , for instance.)

If we use this long form, it is easy to reverse the diff:16 16 Git and Mercurial also offer -R and
--reverse options respectively.



56 distributed version control with git and mercurial

git diff c4071d9 a4ca39f
... which produces, in part, these lines:
-the red, the eastern and western grey, and the antilopine.
+the red, the eastern and western gray, and the antilopine.

Note that this reversed diff undoes the original change. We will use
this property later, to revert (Git) or backout (Mercurial) a commit.

Using the same long form, we can pick any pair of commits and
diff the two. The output will be a set of instructions—a changeset—
for turning the first commit into the second commit. This is true
regardless of how many commits it took to get from the left-hand-side
version to the right, or the time-order of the commits. If we wish
to move forward in time, we must be sure to put the predecessor
commit on the left, so that it is the a/ version, with the successor as
the b/ version.

The diff is not the way the author changed things

The diff algorithms built into the version control system try to pro-
duce some minimal changeset. This can be surprising when we modify
files with repeated text.

For instance, suppose we write a plain text file that reads:

the rain
in spain
in spain
falls mainly
on the plain

That is, we have the line "in spain" repeated twice. This is obviously
a mistake, so we delete the first one. But then we run diff, and our
VCS says:

@@ -1,5 +1,4 @@
the rain
in spain

-in spain
falls mainly
on the plain

That is, it claims we deleted the second repeated line. This hardly
matters: whichever line we delete, the result is the same. But it does
suggest that perhaps, things might go wrong in more interesting
cases—and they do.

Suppose we start with this Python function:

def f(arg):
result = []

for i in arg:



commits, files, diffs, and merges 57

work(result, i)

return result

and then decide we need a prepare() function to examine each item
first, so we add that:

def f(arg):
result = []

for i in arg:
prepare(result, i)

for i in arg:
work(result, i)

return result

If we commit each of these and compare them, we see this diff:17 17 Note that the diff hunk header an-
nounces that the change is inside def

f(arg). Both Git and Mercurial have
built in rules that locate Python classes
and functions, to help us view this diff.

@@ -2,6 +2,9 @@ def f(arg):
result = []

for i in arg:
+ prepare(result, i)
+
+ for i in arg:

work(result, i)

return result

Again, when we treat this as instructions to change the first version into
the second one, they work; they are just not what we actually did.

A high level view of merging

The goal of a merge is easy to understand. Several people or groups,
or even just one person with two or more tasks, started from a com-
mon code base, and made a series of changes. For instance, in the
Marsupial Maker, Alice may be working on wombats while Bob
works on kangaroos. Each person or group (or even just one per- Exercise 3.2: The merge result is not just

Alice’s version, nor Bob’s. (Maybe we
should call this Balice’s—or, making
note of Git’s “blob” objects, maybe
we could call the combination Blob’s.
Or maybe not.) What good would
branching and merging be, if merging
made the resulting source tree match
one of the two sides of the merge,
throwing out the other side?

son taking on multiple roles) works in her or his private reposi-
tory and/or private branch. These two lines of development—i.e.,
branches in the philosophical sense we noted in Chapter 1—are re-
lated by this common starting point. We won’t worry yet how they
manage to share their commits, but at some point, someone—perhaps
Alice or Bob, or perhaps a third person—will combine the changes.
The combination should take all the good parts of both changes. The
simplest method of combining is to perform the three-way merge from
the same chapter. Now that we understand commit graphs, and have
a general idea about comparing newer commits against older ones, it



58 distributed version control with git and mercurial

is time to take a brief high level look at how both Git and Mercurial
perform merges.

Two commits and a merge base

In Chapter 2, we noted briefly (see page 38 and page 45) that the
LCA of any two commits is their merge base. In some cases, there can
be more than one merge base, but this is rare and we won’t address it
yet. Instead, let’s just note that the—presumably single—merge base
is, by definition, not just a common ancestor of two other commits. It
is, in fact, the correct common starting point: it is the first commit that
is reachable from both of the two heads (Mercurial) or branch tips
(Git) that we are merging. The VCS needs to find the merge base to
find out both what we did and what they did.

In both Git and Mercurial, we choose one of our two commits by
the normal checkout process. Whatever commit we have checked
out now—our current commit—participates in the merge. We choose
a second commit using some appropriate commit-identifier, typ-
ically a branch name but occasionally a hash ID, or in Mercurial,
a simple revision number (or sometimes even nothing at all, and
the VCS figures it out for us). That will be the “other” or “theirs”
commit.18 We may then simply run git merge otherbranch or 18 I call the three commits base, current,

and other here. Git has no single,
consistent name for the current and
other commits. Mercurial consistently
calls them the local and other commits. I
also refer to the two non-base commits
as the sides of the merge. In several
places, Git does call the current commit
ours and the other commit theirs.
There is, however, a problem with the
ours/theirs nomenclature that we will
see later, when we cover cherry-picking
and rebasing.

hg merge otherbranch .
Because the VCS has the commit graph, it finds the merge base

automatically, using those LCA algorithms we covered in Chapter 2.
There are ways to see what commit—or, for the multiple LCA case in
Git, commits—the VCS will choose, but generally we do not have to
bother.

Merge runs two diffs

Having found the merge base, the VCS then computes two change-
sets. The first one compares—i.e., diffs—the merge base against our
current commit. Whatever changes show up here, those must be
changes that we made, then put into commits that moved our branch
forward. Likewise, to figure out what they did, the VCS diffs the
merge base against the other commit. Whatever changes show up
here, those must be changes that they made, moving their branch
forward.

It’s important for the VCS to get these two changesets right. Pretty
often, it does, entirely automatically. If not, Mercurial has no way
here to tweak the automated work (though it does have many man-
ual merge tools that we will describe in a later chapter (XXX xref?)).
In Git, though, there are a number of adjustment options. The var-



commits, files, diffs, and merges 59

ious diff algorithms described at the end of this chapter are also
available at merge time. There is one minor flaw: Git does not record
the algorithm you choose, nor any options. If you ever find yourself
wanting to repeat the merge, you may need to remember these. We
will address some of the specifics you might want to tune in Git in a
later chapter. XXX xref?

Combining changesets

The point of getting the two separate changesets is to allow the VCS
to combine them. Our goal—or at least, what the VCS assumes is our
goal—is to keep one copy of each change introduced into each file.

For instance, suppose Bob is running a merge to bring in Alice’s
changes. Suppose further that Alice fixed a bug in wombat.c, but
that both Alice and Bob noticed recently that some other file (such
as doc.txt) contained the misspelling “woombat”. Both removed
the extra “o”, so doc.txt is modified (with respect to the merge base
copy) in both Alice’s and Bob’s branches.

Both Git and Mercurial generally operate line-by-line when using
these comparisons. They therefore show this change as:

the ability of
-the woombat to move at high speed,
+the wombat to move at high speed,
so that

(though both VCSes show several additional lines of context, as we
saw earlier). Since both Alice and Bob made the same change to the
same area of the same file, both VCSes will keep a single copy of this
change.

Alice’s fixes to wombat.c, on the other hand, have no counterpart
in Bob’s changes since the common merge base commit. Both VCSes
can use the context of the base-to-Alice diff to find where Alice’s
changes should go into wombat.c (assuming Bob has made other
changes that have moved the lines around).19 19 In fact, neither VCS has to use the

context directly. They can just count
the number of lines that Bob added
or deleted before the region where
Alice made her changes. But “find the
context, and change it there” works
pretty well as a mental model of how
the merge works.

If both Alice and Bob modified the same lines within a single file,
though, the VCS will declare a merge conflict. In this case, it will leave
partial merge results in your work-tree, and you will have to finish
the merge work manually (and/or with the assistance of any merge
tools you like). There are several other kinds of merge conflict as
well; we will address both them, and conflict resolution in general,
later.

If Git believes that the merge went well, it automatically commits
the result.20 Mercurial, however, insists that you run hg commit to 20 You can suppress this with

--no-commit; then Git behaves just
like Mercurial.

commit the merge. This may reflect the fact that Mercurial originally
did not have any way to correct the merge if it was not right when



60 distributed version control with git and mercurial

first committed (it does now), while Git has always had that ability.
In any case, it’s wise to inspect and/or test the result of a merge: the
VCS has no deep knowledge or insight and simply thinks that the
merge is good if there are no conflicts. By making you commit the
merge yourself, Mercurial gives you a chance to correct it first. By
committing it, Git requires that you fix it up afterward. There are
pros and cons to all approaches here; we’ll examine them in more
detail later.

Git offers two additional actions that it calls merges, although
neither one produces a merge. For the moment, we have not even
seen how to make ordinary commits, so we will only mention them
in passing:

• A fast-forward merge is not a merge at all. Instead, it merely moves
one of Git’s branch pointers (and updates your work-tree and
some other Git-specific items).

• A squash merge performs the merge action: the two diffs and the
combining of the results. That is, it accomplishes a merge-as-a-
verb. However, it then suppresses the final commit so that you
must run git commit manually, and once you do, the new com-
mit is not a merge commit. We will address this in more detail later
(XXX when?), when we get into Git-specific merges.

Note: Readers not interested in details about diff algoritms may skip
the rest of this chapter.

Minimal edit distances

Git offers the option to select among several minimal-edit-distance
algorithms. The algorithms in Git are myers (also called default),
patience, minimal, and histogram. Describing these fully is beyond
the scope of this book, but we’ll touch on them briefly, starting with a
fairly in-depth look at the minimal edit distance problem.

There is a standard (albeit impractical) dynamic-programming
minimal edit distance algorithm for transforming an input string A
consisting of m symbols into an output string B consisting of n sym-
bols. These symbols may be individual characters, or entire lines. I
believe the logic is clearer with characters so let’s use those in this il-
lustration. Consider for our first edit changing “bat” (or maybe “bag”
or “bog”) to “cart”; for our second, let’s change “gull” to “gum”.

For the first edit, we need to have four symbols to spell “cart”. We
can get there by deleting some or all of the three symbols in “bat”
(or “bag” or “bog”), replacing some of the three with symbols from
“cart”, and/or inserting new symbols from “cart”. If we assume, for



commits, files, diffs, and merges 61

the moment, that we’ve correctly handled all but one symbol—that
is, that we’ve done whatever deletion and insertion is required to get
everything except, say, the first “c” correct—then all we need to do is
replace “b” with “c”. The cost of this is 1.21 21 This assumes we have a one-unit-cost

replace symbol directive. However, if we
are inserting or replacing entire lines,
we could charge a higher cost for longer
lines. If we must delete-and-insert to
cause a replacement, the cost seems like
it should be 2.

In practice this does not really matter
too much. However, in a window-
display-update algorithm I modified
in 1981, I computed fairly exact line-
insert, line-delete, and line-replacement
costs—with replacement taking any
re-usable existing line contents into
account—as these corresponded to the
number of control codes (for insert
or delete operations) and/or ASCII
characters (for any visible replacement
text) one sent to a display device over
a potentially very slow serial port. In
that era, 300 and 1200 baud (30 and 120

bytes per second) data transmission
rates were common. The O(n2) time
complexity became a problem on larger
screens, though, such as the 60-line Ann
Arbor Ambassador.

When changing “gull” to “gum”, though, the result will be dif-
ferent: we “replace” the “g” with “g”. The replacement cost is free
(zero). Hence, we want to define a replacement-cost function for a
single symbol pair x, y:

rc(x, y) =

0, x = y

1 (or more, up to ∞), x 6= y

To get to this point, though, we may have needed to do some
insertions and/or deletions. In fact, since the input string in our bat-
to-cart case is shorter, we will definitely have to insert something.
There are of course other input and output strings that are the same
length, but let’s consider the cost of an insert. To insert a symbol like
“c”, we will use a cost of 1 as well. The appropriate cost for a delete
is less obvious, but in effect, Git and Mercurial use 1 here too.

Let’s step back and consider the overall problem now. We are go-
ing to take an m-symbol-long input string A, such as “bat” or “gull”,
and produce an output B that is n symbols long, such as “cart” or
“gum”. We may as well define the cost of transforming any empty
string to any other empty string as zero: cost(ε, ε) = 0. Similarly,
the cost of transforming a non-empty string to an empty string is the
length of the non-empty string (because we have to delete all those
symbols), and the cost of transforming an empty string to a non-
empty string is the length of the non-empty string (because we have
to insert all those symbols).

Thus, we define our base cases as:

cost(A, B) =


0, A = B = ε empty—do nothing
length(A), B = ε delete A
length(B), A = ε insert B
. . . else see below

We also define tail(S) as the rest of the symbols in string S, after
stripping off the first one, S0.

Then the minimum cost for solving the whole problem—along with
the minimum sequence of insert, delete, and replace operations—is
obtained by evaluating this recursive formula, using the empty-string
ε cases to terminate the recursion:

cost(A, B) = min


1 + cost(tail(A), B), delete A0

1 + cost(A, tail(B)), insert B0

rc(A0, B0) + cost(tail(A), tail(B)), replace A0 with B0



62 distributed version control with git and mercurial

That is, assuming we haven’t reached one of the empty-string base
cases, we find the best way to do everything else that would be re-
quired if we delete the first symbol in A, insert the first symbol in B,
or replace the first symbol from A to B. To this best case cost, we add
either 1 (for insert or delete), or our replacement-cost-function based
on the first-symbol equality. This adds nothing if we’re getting a free
replacement because the symbols match.

For Git and Mercurial diffs, we discard the notion of replacing a
symbol (or a line): we only delete and insert. In effect, the replace-
ment cost if the symbols do not match becomes infinite, so that the
minimum cost comes from inserting or deleting instead. We keep the
symbol—the character or line—if and only if it matches.

As we noted at the beginning of this section, one way to solve this
without re-evaluating all these intermediate results (which would
give us an explosion of recursion) is to use the dynamic programming
technique, where we make a data structure to hold problems solved
thus far and avoid re-solving them.22 We create an m + 1 × n + 1 22 This is functionally equivalent to

memoization: for any two string param-
eters A and B, remember the cost to
transform string A to B, along with
the chosen operation—insert, delete,
or keep-or-replace—in a cache. How-
ever, the matrix method is particularly
elegant.

matrix M representing two items: a best edit cost, and the chosen
action-thus-far that produces this best-cost. The value in Mi,j repre-
sents the best cost of transforming the first i symbols of A into the
first j symbols of B. We fill the upper edge of the matrix (row zero,
i = 0) with the cost of converting an empty source string to as much
of the destination string as that cell represents. We fill the left edge
(column zero, j = 0) with the cost of converting that much of the
source string to an empty destination string:

M0,j = j 0 ≤ j ≤ n
Mi,0 = i 0 ≤ i ≤ m

Except for M0,0, which represents stop, each top-edge, row-zero entry
corresponds to an insertion of the j− 1th symbols of string B; simi-
larly, except for M0,0, each left-edge, column-zero entry corresponds
to a deletion of the i − 1th symbol of string A. We can remember
these as arrows: a left arrow← means insert and an up arrow ↑
means delete. (We’ll see in just a moment why I use these particular
arrows.) Hence the initial 4× 5 matrix for changing any three-symbol
string such as “bat” to any four-symbol string such as “cart” is:

×0 ← 1 ← 2 ← 3 ← 4
↑ 1 − − − −
↑ 2 − − − −
↑ 3 − − − −

and, for instance, M0,4, which is 4, is the cost of inserting “cart” if we
were to initially have the empty string (which of course we don’t),
while M1,0, which is 1, is the cost of deleting “b” from “bat” or “bag”



commits, files, diffs, and merges 63

or “bog” so as to leave the last two letters (which is of course not our
ultimate goal, but may serve to get us towards it).

Next, we simply fill all the remaining rows and columns using the
minimum of the three operation costs.23 For matrix element Mi,j, the 23 In case of ties, it doesn’t matter much

which we pick here, though for screen
updating, “replace” is less jarring
visually and should win. Note that
whenever the symbols at Ai−1 and
Bj−1 match, though, the do-nothing
“replace” choice always wins.

minimum cost is:

• an insert of Bj−1, whose cost is 1 + Mi,j−1 (one step left), or

• a delete of Ai−1, whose cost is 1 + Mi−1,j (one step up), or

• a replacement of Ai−1 with Bj−1, whose cost is from the replacement-
cost function plus the cost of getting here through Mi−1,j−1 (one
step up and left).

The curious thing is simply recording the source of the cost (up-and-
left, up only, or left only) suffices to find our minimum edit path, once
the matrix is completely filled. For instance, let’s watch the matrix get
filled with directions for changing “bat” to “cart”, using our arrows
to each matrix entry to show where the cell’s calculated cost comes
from.

The initial table becomes, after a pass through the first row:

×0 ← 1 ← 2 ← 3 ← 4
↑ 1 ↖ 1 ↖ 2 ↖ 3 ↖ 4
↑ 2 − − − −
↑ 3 − − − −

(Each entry in row 1, except for M1,0, is a replace: replace “b” with “c”
at M1,1, for instance. This is because there is no “b” in “cart”.)

The last two rows finish making it interesting:

×0 ← 1 ← 2 ← 3 ← 4
↑ 1 ↖ 1 ↖ 2 ↖ 3 ↖ 4
↑ 2 ↖ 2 ↖ 1 ← 2 ← 3
↑ 3 ↖ 3 ↑ 2 ↖ 2 ↖ 2

Here, for instance, Mi=2,j=3 represents an insertion. The symbol to Note that this matrix forms a Directed
Acyclic Graph.be inserted is Bj−1 or “r”. However, we start at the lower right corner

of the matrix, M3,4. This points up and left, i.e., represents a replace
operation, that replaces Ai−1=2 with Bj−1=3. Since both are “t”, we do
nothing at all, leaving “bat” alone. The total cost of this is 2, although
we have not paid it yet: this cost of 2 is inherited from above.

We then move northwest in the matrix, to Mi=2,j=3. This points
left-only, i.e., represents an insertion. The symbol to be inserted is
Bj−1 or “r”, so that we now have “bart”. We follow the arrow left to
Mi=2,j=2 where we find the cost is now reduced to 1 and the arrow
points up-and-left: “replace”. This replaces Ai−1=1 with Bj−1=1, so
that “a” stays “a” and we continue to have “bart”. Now we move to



64 distributed version control with git and mercurial

Mi=1,j=1. This has another northwest arrow, so we replace Ai−1=0

with Bj−1=0, changing “b” to “c”, producing “cart”.24 We follow the 24 When we modify the algorithm to
forbid symbol replacement operations,
we will insert the “c” and delete the
“b”, moving left once and then up.
Note that this simplifies interpreting
the matrix, since diagonal arrows now
always mean “keep”.

arrow up and left, arriving at position 0, 0 and terminate.

Longest Common Subsequence and the Myers algorithm

Converting a simple string like “bat” to “cart” with our original
algorithm uses a four by five matrix.25 The compute time is therefore 25 One can shrink this to 3× 4 since the

zero-edges are so easy to calculate, but
this makes little difference.

O(mn) in the number of symbols. For two versions of a file with
about ten thousand (104) lines each, a diff would have to make about
108 comparisons, and this is far too slow to be practical.

However, we can see intuitively from the matrix that long se-
quences of symbols match exactly; move diagonally have no added edit
cost and usually result in a winning path. This is one reason to forbid
symbol replacement in favor of insert and delete only: now diagonal
paths always mean “symbols match and can therefore participate in
LCS”. Then all the diagonal transitions represent common (matched-
up) symbols. If we compute the entire matrix and find the best path
through it, the symbols retained through diagonal movement make
up the longest common subsequence or LCS. Unfortunately, finding the
LCS is itself computationally hard.

There are several algorithms that do better than O(mn), yet always
find the LCS. For instance, one is known as the Method of Four Rus-
sians.26 This divides the large notional matrix into smaller t-blocks 26 The “Four Russians” name is due to

the four authors of a paper on construc-
tion of transitive closure of a directed
graph. While the authors’ names—
Vladimir Arlazarov, E. A. Dinic, Alek-
sandr Kronrod, and I. A. Faradzev—
seem likely Russian, according to
Wikipedia, “It is unclear whether all the
four authors were in fact Russian at the
moment of publishing the paper.”

and uses offset vectors and the observation that the difference be-
tween any adjacent matrix cells is at most 1, allowing us to avoid
allocating and computing some parts of the larger matrix entirely.

Even this is still impractical for diffing large files, but there are
numerous heuristics that do work well in practice. For instance,
assume that many—not just a few—symbols really do match up.
We may be able to use this to identify some single, reasonably long
diagonal in the matrix we might build from A and B. Imagine, for
instance, that there are 9000 untouched lines in the 10000 lines in our
hypothetical file. These lines—the symbols in A and B—need not
occur exactly once in each file, but finding them, then alignining the
remaining non-unique-but-also-matching lines, is much easier when
there are unique lines: We start at the unique matches, then extend
outwards in either diagonal direction.

Now we can simply divide the input-and-output strings (or files)
into two parts. We will only build and look at the upper left sub-
block (or sub-box) of the full matrix that comes before our long diag-
onal sequence, and the lower right sub-box that comes after. We then
recursively compute two sub-diffs on the parts before and after the
long sequence. If our hypothetical 9000 lines are right in the middle,



commits, files, diffs, and merges 65

we immediately reduce the problem from roughly 108 comparisons
(the entire 104 × 104 matrix) to an upper-left 500× 500 matrix and
a lower-right 500× 500 matrix, and now we need only 2 · 5002 com-
parisons. Furthermore, if these sub-matrices have a long diagonal
sequence within them, we will win there again. Perhaps in the end
we will only compute three or four 10× 10 matrices for three or four
changed regions. This is a classic divide-and-conquer strategy.

Git uses an algorithm due to Eugene W. Myers [Myers, 1986],
which typically runs in O(ND) time. Here D is the length of the edit
script—the number of insertions and deletions—and N is the length
of A and B, which are assumed to be roughly the same length. (If
they are wildly different, D is guaranteed to be large.) It assumes
that there are many matching symbols (lines) and uses a greedy
algorithm to find the best available long diagonal, so that we can
divide-and-conquer as above. I will leave the complete details of
the Myers algorithm to the cited paper, but as long as D is relatively
small, which it usually is, this diff algorithm is much faster. Git’s
implementation adds some extra heuristics that accept sub-optimal
diagonals early in some cases, to avoid extremely slow behavior if D
is large.

Mercurial uses a customized internal diff that makes some fairly
brash assumptions about long common subsequence matches, choos-
ing long ones “near the middle” of the two strings for its divide-
and-conquer approach. Since there are no user-tunable parameters
anyway, there is not much more to say about it.

Git: minimal, patience, and histogram diffs

The minimal algorithm simply modifies Git’s myers implementation
to avoid the heuristic shortcuts, and thus compare more items when
it looks for long common sequences. The goal here is to spend more
compute time to make sure that the edit sequence is as short—i.e.,
minimal—as possible (but still not necessarily the most sensible, as
we have seen). Since these shortcuts give Git’s diff a lot of its speed
when Git is comparing very dissimilar files,27 this really does slow 27 How common or rare this is depends

on the inputs.down the diff. It is not at all clear when this produces shorter edit
scripts in practice.

The patience algorithm uses a different technique. First, it makes
a pass over the input files to find which lines in each file are really
unique and which ones repeat. The idea here is that a lot of pro-
gramming languages’ source files have sequences of easily-matched
“noise lines”, e.g., consisting of just the word end or a closing brace
or similar. Treating these as long common sequences is not helpful.
If anything, it is liable to cause false matches, where the diff de-



66 distributed version control with git and mercurial

cides that several close braces or ends in a row can be matched up to
make a shorter edit script that replaces one or two “significant” lines
instead. Hence this variant applies the greedy algorithm (for long
common sequences) to whatever remains only after these non-unique
“noise lines” are stripped out. It then extends the best diagonal so
far with the original “noise” lines re-inserted as long as they continue
to match. Finally, it divides and recurses on the sub-boxes (finding
unique lines anew, since each sub-box may now have unique lines
that the original did not).

The histogram algorithm is a further modification of the patience

algorithm. Instead of taking only unique lines to find long common
sequences, it counts the relative frequency of the lines. Less-frequent
lines “count more” in the long common subsequence, but unlike
patience diff, the lines need not be entirely unique.

This last algorithm should, in theory, probably be the best for at
least some files such as source code. However, some internal hash
functions were mis-applied in a way that causes some files to see
pathological behavior from histogram diff. This is fixed in Git ver-
sion 2.12. If histogram diffs do prove to be better in general, Git will
probably make these the default algorithm eventually.



4
Distributing repositories

One of the distinguishing features of Git and Mercurial is that they
are distributed (as noted in Table 1.3). We have said what this means:
that there is no central repository, so that no clone is any more special
than any other (except by user choice of course). We have not yet,
however, said anything about how this is achieved. By the end of
this chapter, you will understand the key principles underlying the
distribution of repositories. This includes the use of both names
(such as branch names) and hashing, although the use of the names
differs in Git and Mercurial.

We noted earlier that Mercurial branch names are global. Global,
in this case, means the same in each repository-clone. It’s easy enough
to see how branch names work: when Alice creates a branch named
for-carol and Carol synchronizes with Alice to get Alice’s work,
Carol acquires both the branch and the commits. Git’s branch names,
however, are deliberately not global, or perhaps can be called semi-
global, which is possible mainly because Git’s commits are not tied to
particular branches.

We also noted that both Git and Mercurial use GUIDs—Globally
Unique Identifiers—to identify commits: commits have names like
a2741b3.... Both systems use these GUIDs to discover and exchange
commits whenever you direct the system to synchronize your clone
with a peer. In order to make this work correctly, these GUIDs really
must be globally unique.1 It would not do for Bob to create a different 1 More specifically, they must be unique

among all clones of a given repository,
including forks that may rejoin in the
future. This is a somewhat weaker re-
quirement than true global uniqueness.
For instance, if Alice makes a commit,
but then destroys it without ever shar-
ing it with anyone else, the destroyed
commit is allowed to have the same
GUID as some future commit, or a com-
mit in an unrelated repository. You can
think of this as allowing Doppelgänger
commits: they may share a GUID only
as long as they never meet.

commit (in Git) or changeset (in Mercurial) and wind up with the
same GUID that Alice got for the changes she gave to Carol, because
then Carol’s system would believe that she already had Bob’s work.

Both Git and Mercurial produce these GUIDs by hashing commits.
We will see how both the hash function and the data given to it are
critical to make this work. In fact, Git hashes almost everything you
give it, and exposes more of this to users: given a GUID (i.e., hash
value), Git makes it trivial for you to view the item that was hashed.
You will sometimes see this said as “Git stores content” (which is



68 distributed version control with git and mercurial

true, and is also useful for some mistake-recovery, although “storing
content” has a deeper philosophical meaning we’ll see later). Mercu-
rial keeps its hashing better-hidden, so that the only place you see it
is in changeset GUIDs. In this chapter, we’ll look only at what both
VCSes do in common, in order to make repositories distributed.

Hashing

Hashing, in our case, is the process of taking some input key, e.g., a
string, and mapping it to a hash value, such as a smallish integer. That
is, we define some function h(k) to take large inputs and reduce them
to smaller outputs. Hashing can get very complicated, with all kinds
of requirements on hash functions, the ability to do multiple stages of
hashing, and so on.

If the input keys have more possible values than the output hash
value, the Pigeonhole Principle tells us that at least some different
inputs must result in the same hash. That is, there are keys k1 and k2

with k1 6= k2 for which h(k1) = h(k2). These are called hash collisions. Almost all hash schemes must deal
with collisions. One exception is the
so-called perfect hash, where a known,
fixed set of input keys will be mapped
to the output hash values. In this case
the image of h may be smaller than its
codomain, i.e., we might allow 45 input
keys to map to 55 hash values; or h
may be surjective, if we can figure out
how to map our n keys into exactly n
values. Perfect hashes are often used
to decide whether some arbitrary
input is actually one of the pre-selected
keys, and if so, which one. They are
particularly useful for operations like
turning computer language keywords
into internal token-IDs.

The paragraph above uses the terms
codomain and image, which are more
precisely defined than range. In this
chapter, though, we’ll use the word
range to describe the cardinality of the
set of all possible output values of our
hash function, assuming arbitrary keys.

In our case, our hash function should:

• be deterministic;

• accept arbitrary length data;

• be reasonably fast;

• have a defined range;

• have good uniformity; and

• be non-invertible (also called one-way hashing).

The first property, determinism, is required of any hash function.
That is, if h is any hash function and we have two keys k1 and k2,
h(k1) = h(k2) whenever k1 = k2. (Note that this says nothing about
the hash function value when the keys differ.)

The second property, arbitrarily long input keys, is a require-
ment because both Git and Mercurial hash the contents of at least
some version-controlled files and/or changesets. Both of these have
sizes bounded only by the underlying operating system. Here, both
systems have borrowed hashes from cryptography, because crypto-
graphic hashes operate on very long keys. Cryptographers call their
inputs messages, and their outputs message digests.

The third property, speed of computation, is to some extent a mat-
ter of compute power and taste. If we are to compute many hashes,
though, the speed (or lack thereof) of the hash function will affect
the usability of the VCS. Mercurial computes one hash per added



distributing repositories 69

changeset plus one hash for new files.2 Git computes a hash for vir- 2 The notion of “new” here is admit-
tedly fuzzy.tually everything, so speed of hashing is more important in Git, but it

is still significant in Mercurial.
The fourth property, a defined range, allows us to store the hashes

in fixed-size fields. Mercurial makes somewhat heavy use of this
property internally (but is good about not exposing it). Git also uses
it internally, but currently exposes its fixed-size hashes directly by re-
quiring that some scripts (called hooks) often spell out Git’s null hash,3 3 This could have been avoided early

on by, e.g., providing an option to
git hash-object or git rev-parse

to produce the special null hash, and
the hash for the empty tree. The current
plan for expansion is to use the fact
that Git allows one to abbreviate hashes,
so that if Git moves to a longer hash,
shorter hashes might still work as
before. I foresee some problems with
this plan, but time will tell.

and documenting the form and length of hash values. (Mercurial’s
hooks are written in Python and use libraries that hide the hash’s
details.)

The fifth property, uniformity, has to do with avoiding collisions.
Informally, a hash function that has good uniformity will produce
seemingly-random output values, spread across all possibilities, from
different inputs. This is perhaps most easily illustrated by consid-
ering several extremely-non-uniform hash functions operating on
integers, such as h(x) = 0 (or any other constant), or when the output
range is, say, integers between 0 and 1023 inclusive, h(x) = x mod 2. Exercise 4.1: The second case declares

that the output range is more than just
one bit. If the output is just one bit,
does x mod 2 provide good uniformity?
Consider whether we know anything
about the input keys assigned to x.

Even if the output does use all possible values, though, it might still
be biased, such as h(x) = blog2 xc (with input values ranging from
1 to 2N−1 and outputs from 0 to N − 1). A hash function with good
uniformity uses all output values and is not biased like this.

The last property, one-way hashes, is not strictly required. We
want it because we will use the output of the hash function as our
GUIDs. A one-way hash means no one can deliberately create a file
or changeset that produces the same GUID as something already in
the VCS.4 That is, even with malicious intent, no one can cause our 4 More precisely, while it’s technically

possible, the amount of computation
required is overly expensive.

VCS to fail. Without this property, someone could (at least poten-
tially) engineer such a failure.

Both Git and Mercurial currently use the cryptographic hash func-
tion known as Secure Hash Algorithm 1 (SHA-1), which produces
a 160-bit hash. SHA-1 is part of a group of algorithms denoted by
number: SHA-1, SHA-2, and SHA-3. SHA-2 and SHA-3 both com-
prise multiple functions with 224 or more bits of output (see Dang
[2015]). These functions are generally referred-to by their bit length,
with SHA3 as a disambiguator if needed: e.g., SHA-256 vs SHA3-256.
All of these hash algorithms have large yet uniform outputs and are
thus plausible candidates for GUID generation (see the end of this
chapter for the gory details).

Avoiding accidental hash collisions

Of course, we would like to avoid accidental failures, so let us con-
sider the probability of hash collisions. The chance of a random (non-



70 distributed version control with git and mercurial

engineered) hash collision depends on three factors: the size of the
output value space (the range r below), the uniformity of the hash
function, and the number of keys hashed.

As we just noted, SHA-1’s output is a 160-bit message digest,
which both Git and Mercurial encode as 40 hexadecimal digits:
these are the a2741b3... values you see as GUIDs. This provides
a huge range of encoded hashes: 2160 is a bit over 1048, or about 1.46 Obviously log2 2x = x, and log10 10y =

y. Since logarithm bases scale, we
can first compute log 2/ log 10 ≈
0.30102 and then simply compute
160× 0.30102 = 48.163 . . . here.

quindecillion (using short scale names for numbers). To get a better
handle on that, consider that 1016 is ten quadrillion, and 1048 is ten
quadrillion squared (1032) times bigger. A larger hash output space
would of course provide even more range.

Mercurial provided enough room in advance to switch to a 256-bit
hash such as SHA-256, but there has not yet been a need to do so.
One might think that, at least in the absence of malice, even SHA-1’s
160-bit digest is nuke-it-from-orbit overkill; but it is trickier than that.
We will examine this in some detail in an optional section below, but
for now I will note that you may see the figure 280 or 1024 elsewhere.
This is the number of messages you would have to hash to get a 50%
chance of collision. Presumably we want more than a 50/50 chance
that our VCS will cease to function. To get 99.9999999999999999%
reliability—that’s 18 nines—we can use a much smaller number,
1.7× 1015, as our limit.

Note that this number—over 1 quadrillion—implies very large
repositories. 1015 is close to 250, and since each digest represents a
unique message, we need roughly 250 distinct messages just to get a
1-in-1018 chance of an accidental collision. We don’t know how big
these messages are (between the actual average object or changeset
size, the compressions applied, and general overhead, it is not obvi-
ous), but even if it were just one byte—and it is definitely more than
that—the 250 factor alone implies we need at least a petabyte just to
store all the inputs. There seems to be no danger here.5 5 The performance of both Git and Mer-

curial tends to fall off as the number
(and size) of items in the repository
grows, limiting repositories to numbers
far smaller than these. Of course, this
also depends on a reasonably uniform
hash function and—in the presence
of potential mischief—the one-way
property.

How DAG + GUID = distributed

Before we dive into the process below, let’s make a clear distinction
between private and public commits. A private commit is simply
one that you have not shared with anyone else. Each commit has a
unique ID, so those that are private have IDs that no one else has.
A public (or published) commit is shared. Git does not retain this
property directly—though we will see in a while how Git’s remote-
tracking names get close enough—but Mercurial (as of version 2.1)
does, calling these phases. (In fact, it splits private into secret and draft;
we’ll see what this means in more detail later.) Given that we have
distributed repositories, any particular pair of repositories may have



distributing repositories 71

some public commits that are shared between them, some public
commits that are not—some commits that are shared, just not with
each other—and some commits that are purely private. Our goal here
is to share some or all commits, but we’ll start with a slightly simpler
task.

Imagine that you and Alice both started the day with perfectly
synchronized repositories. It is now the end of the day; and to sim-
plify even more, let’s also suppose at first that you were stuck in
meetings, but Alice was able to get some good coding done, and “... And we’re all going to stay in this

meeting until we figure out why no one is
getting any work done!”

has committed the new code into her repository. You would like to
pick up her work. You could simply re-clone her entire repository, of
course: “delete the project and download a fresh copy,” as Cueball
suggests in the xkcd comic. If you’re both on a fast network (or shar-
ing a machine) that may even be a reasonable approach. But what if
you’re in different offices, with a slow network and a large reposi-
tory? Or, what if instead of being in meetings all day, you got some
good coding done too, and have your own commits? You could add
the “save your work” part of Cueball’s advice. Instead, though, let’s
see how you can pick up Alice’s commits, making them public and
shared with you.

Since each commit has a GUID, you can tell your VCS to get in
touch with Alice’s VCS, using the computer network as a sort of
telephone call. (Both Git and Mercurial have multiple built-in net-
work protocols for doing just this.) Your VCS then asks hers for
commits. At this point, your VCS could hold a simple and straight-
forward conversation with Alice’s, where for every commit, Alice’s
VCS says “I can give you the commit identified by 12345....” Yours
then replies with either “No thanks, I already have that” or “Oh yes!
Please send that one!” This would be kind of a stripped-down clone
operation: look at every commit, skip all the ones you already have,
and bring over the ones you don’t. This is an improvement over a full
re-clone, but the price is quite a few have/want sequences: one for
every commit in her repository. You and Alice both have a commit
DAG, though, and we can do better—in fact, much better.

Again, for the moment let’s assume that your repository is strictly
behind Alice’s: you were in sync this morning; she has added com-
mits, you have not, and you just need those commits. All Alice’s VCS
needs to know, then, is: What are the tip commits on your branches?6 6 Reminder: these tip commits are the

ones that Git branch names point to, or
the ones called “heads” in Mercurial.

Given the GUIDs of these commits, Alice’s VCS can walk her com-
mit graph from her tip commits back to these nodes. Because nodes
are immutable and their IDs are universal and global, you and she
must necessarily have the same graph from these points back to any
root nodes. The nodes in between—the ones Alice’s VCS visits on its
walks back to the shared nodes—are precisely the commits Alice’s



72 distributed version control with git and mercurial

VCS should send to yours.
This is fine if your repository is strictly behind Alice’s, but what if

you have commits she doesn’t? The picture here is more complicated.
What we would like now is to find the Least Common Ancestors.
Since each repository has different additions to this morning’s graph,
neither VCS can do this on its own. The actual implementation uses
the basic have/want protocol we just mentioned: Alice’s VCS gives
ours an initial list of GUIDs, and our VCS tells her which of those we
want. Her VCS then uses the wanted commits’ parent links to offer
more GUIDs, which our VCS replies to in the same way. Note that
during this process, Alice’s VCS carefully sends us her GUIDs in a
topologically sorted order, working from tips backwards. As soon as
our VCS replies with “I already have that one,” Alice’s VCS knows
that we have that one and all its parents. Alice’s VCS can therefore
stop traversing that part of the DAG and move on to other not-yet-
known-to-be-shared GUIDs.

Having identified the commits to transfer, her VCS now merely
needs to send over a series of changesets, or anything equivalent.
Git uses multiple mechanisms, but typically it saves deltas7 into 7 Remember that deltas are the build-

ing blocks of changesets. Due to its
unusual mechanisms, Git packs up the
deltas themselves, rather than actual
changesets.

what Git calls a packed archive or pack file (and more specifically a thin
pack). Mercurial packages changesets into what it calls a bundle. The
exact details are not critical here—most users need not even be aware
of pack files at all, though Mercurial bundles are useful later—but
this is what is going on when you see Git’s “counting objects” and
“compressing objects” messages.

As soon as you have Alice’s commits, those commits are pub-
lished. That is, your repository has stored those commits with their
GUIDs. Alice cannot take them back—not without your cooperation,
at least. We’ll see in detail how to retract commits later, and more im-
portantly, when and why. For now, just note that by retracting an un-
published commit, you can avoid sending out non-functioning work.
Moreover, you can retract a broken commit and then add instead a
correct commit, and no one but you need ever know. . . assuming,
of course, you did not publish the broken commit already. Once
the commit is lodged in other repositories, it will keep coming back
when you sychronize with them.

This kind of retraction, especially with subsequent corrected com-
mits added, is usually called “history rewriting”. Some VCS users
say you should never rewrite history. I stand with those who say
there is nothing fundamentally wrong with history rewriting. If
your work has become public, though, rewriting creates a number
of issues. We’ll go through these in detail later. Most of them are
problems for your co-workers or colleagues, and you and they simply
need to agree in advance as to what may be rewritten.



distributing repositories 73

Push, pull, fetch

The abstracted VCS conversation above, where your VCS picks up
new commits from Alice’s VCS, only operates one way: you get her
work. The term for this action is a little bit problematic, because
Git and Mercurial use different verbs. In fact, they started out with
the same verb, to pull, but the Git programmers combined this with
merging. In Git, pulling gets the changes and then attempts to in-
tegrate them immediately, and the verb we want is to fetch: retrieve
commits, with no additional processing. Mercurial defined pull the
way we want, obtaining new commits but not merging them. Unfor-
tunately, Mercurial has an extension that adds the verb fetch, with the
meaning pull, then merge, then commit, which is what Git’s pull verb
means! For the moment, we will use the word pull, but keep in mind
that in Git we will git fetch .

If you can pull, you should be able to push, and sure enough, both
Git and Mercurial allow you to push changes. Pushing generally
requires more permission than pulling: for instance, public reposito-
ries (as on github.com or kilnhg.com) allow anyone to pull or clone,
but not anyone can push changes to them. If you do have permis- Exercise 4.2: List some reasons you

might not want anyone to be able to
push to a repository you set up on one
of these public-access sites.

sion, though, the process of pushing works much like the process
of pulling, except that after your VCS dials up its counterpart over
the Internet-phone, yours takes over the role of offering GUIDs and
theirs takes over replying with “want” or “already have”. The remote
repository can also decide, independently of this commit DAG con-
struction phase, whether to allow the push based on whatever rules
the recipient chooses. We will see much more about this later, but
for now, note that the pulling process is simpler: your VCS assumes
that you mean to allow all the new commits in. Since they are not yet
integrated into the work-tree,8 it’s quite safe to bring them all in: you 8 Unless, of course, you’re using git

pull. This is one reason to use git

fetch instead. We will see, later, when
you might use git pull for conve-
nience.

can inspect them as much as you like, then take or ignore them, since
your private repository is yours to deal with however you like.

DAGs, heads, and branch tips, oh my!

Pulling (or fetching) and pushing updates a commit graph, but we
need more than just the graph. We need to be able to find the new
branch tips.9 We noted in Chapter 2 that Git and Mercurial use dif- 9 Of course, we already have not just

the parent links, but also all other
commit/changeset metadata, along
with any necessary file names and
contents, all of which were part of the
thin-pack or bundle. We just need to
see how these branch tips work.

ferent methods for this: Mercurial automatically finds all heads, while
Git uses branch-names to point directly to commits, making those
become branch tips. Whenever you retrieve commits from another
repository, or send your commits to another repository, what hap-
pens to these automatic heads or branch-name-identified tips? Most
users find the action in Mercurial to be clearer and simpler, so we

http://github.com
http://www.kilnhg.com


74 distributed version control with git and mercurial

will cover it first. default

Figure 4.1: Mercurial: two heads in one
branch

With Mercurial, pulling from a peer like Alice’s repository—
recall that a peer is any other remote repository—brings over all
the changesets the remote shows, via the abstracted VCS conversa-
tion we just reviewed. (Remember that changesets can be marked
secret on the remote. You can add your own restrictions as well, such
as bringing over only changesets belonging to one particular branch,
but for now let’s work with the default action.) This may cause new
branches to spring into existence, if the new changesets (commits)
are on new branches. In any case, though, it may cause branches to
contain an internal division, resulting in multiple heads, as shown
in Figure 4.1. The top row of commits represents your work, and the
second row are commits you picked up from Alice.

This Git-style branch—we might call this a branch within a branch,
though Mercurial itself just sticks with the term “heads”—happens
when both you and Alice made commits (Mercurial changesets)
based on the point at which the fork occurred. Now that you have all
three changesets, both your latest commit and Alice’s two commits
descend from the same common ancestor. Mercurial handles this just
fine on its own: your branch now just has two heads. You, however,
must take care of this, usually by either rebasing or merging. We’ll
look at this in detail later.

Suppose that either instead of, or in addition to, pulling Alice’s
work, you were to push your work to Alice, In this case, her repos-
itory would wind up with the exact same internal fork, although
we might want to draw the resulting commit DAG with your single
changeset on the second row,10 and her two changesets on the first. 10 Which row a commit-sequence ap-

pears on is not significant topologically,
but it is a useful visual cue.

By default, though, Mercurial simply refuses such a push, telling you
that this would create a new head. You can force the push anyway,
and no real harm comes of this,11 but Mercurial is trying to encour- 11 Your collaborators may get a bit

annoyed, though: with one head in a
branch, it’s clear where to continue
working and make the next commit,
but with two or more, which head is
headier?

age you to pull, then rebase-or-merge, and only then push. If you
were to do this as a merge, the changesets you would push will then
present just a single head (see Figure 2.10, for instance; note that the
merge commit would point back to both your single commit and
Alice’s two).

In Git, though, branches are more loosely defined: sometimes we
mean branch names, pointing to the tip of a branch, and sometimes
we mean commit-DAG subsets, starting from the tip identified by a
branch-name and working back to a root commit, or to some cutoff
point, vaguely- or explicitly-specified. When we do a fetch or push,
we acquire or send new commits, changing the commit DAG, but
what about the branch names?

Ever since version 1.5, Git’s answer for fetch has been to use

Historical note: this change, which went
into full effect in Git version 1.5.3, is
when git fetch, rather than git pull,
became the proper counterpart to git

push.remote-tracking names. Git documentation calls these remote-tracking



distributing repositories 75

branch names, but I think this phrase is more confusing than remote-
tracking names: it means we must at least sometimes refer to our
own branch names as local branch names. For now, let’s do that as
necessary.12 12 There’s another reason not to call

these remote-tracking branch names,
which we will see later in Chapter 5.
Specifically, checking out a remote-
tracking name results in a “detached
HEAD,” while checking out a branch
name does not. This makes the remote-
tracking name significantly non-branch-
like.

In any case, to fetch, you direct your Git to contact a peer Git,
such as Alice’s repository, by some name that you find short, conve-
nient, and memorable. Git calls the name you use here a remote. The
spelling of this name is up to you, but for now let us spell this remote
alice (you will often see origin instead; we’ll see why later).

When you use git fetch alice to pick up Alice’s work, you
get the same commit DAG as you would with Mercurial, but since
Git requires that we have names pointing to tip commits, what Git
does here is to construct new names from the branch names Alice
has, prefixed with the name of the remote itself.13 That is, if Alice 13 The full names of these are

refs/remotes/alice/master and
refs/remotes/alice/test. Local
branch names have a separate name-
space beginning with refs/heads/.
This guarantees that even if you have a
(local) branch whose name starts with
alice/, the remote-tracking names
won’t use the same full name.

has two branch-names master and test, our Git renames these to
remote-tracking “branches” named alice/master and alice/test.
This is how Git achieves the “semi-global” names we mentioned
at the beginning of the chapter: you see Alice’s branch names, but
qualified with a prefix of your choice.

master

alice/master

Figure 4.2: Git: local vs remote names

What this means in practice is that instead of Figure 4.1, we get
Figure 4.2, which is an entirely normal case of git branching (cf. Fig-
ure 2.9). Instead of just local branch names pointing to tip commits,
we have both local names and these new remote-tracking names point-
ing to tip commits.14 14 You might wonder how remote-

tracking names get updated. The
simple answer is that they are updated
on every fetch and push, using the
branch information coming from the
remote. Due to changes over time in
design decisions, this simple answer is
too simple: the precise details depend
on your version of Git. Nonetheless,
a good way to think of this is that
remote-tracking names remember
where the branches on the remote were,
the last time we checked.

For git push , though, Git does much the same thing as Mer-
curial, for an even stronger reason. The remote peer will by default
refuse a push if it would, in Mercurial’s terms, create another head.
This is because Git cannot create another tip under a single reference
name, and Git’s push mechanism, unlike Git’s fetch, has no built-in
concept of renaming branch-names. Your Git simply asks the remote
peer to set its (the remote’s) branch label to point to whatever new
commit you give it, forgetting where it used to point. If this new tip
commit causes the peer’s commit graph to lose reachability for some
of its commits, those commits become eligible for true deletion. We
will cover this ground again later in more detail. For now, just re-
member that forcing a push can cause your remote peer Git to discard
commits.

Automatic corruption detection and Merkle trees

Git and Mercurial both guarantee15 that the hash of a distinct string— 15 With whatever probability we achieve
by limiting the number of items in the
repository, anyway.

such as the contents of a source file—is unique. This hash acts as
a checksum, verifying the source file’s contents, as well as being a
unique fingerprint identifying the contents. That makes sense for



76 distributed version control with git and mercurial

files, but we hash more than just files: we hash commits. The trick
here is that the hash of any particular commit (in Git) or changeset
(in Mercurial) not only uniquely identifies that commit or changeset,
but also uniquely identifies the entire history leading to that commit
or changeset.

Both systems begin by hashing the contents of files, specifically the
files in the first commit.16 Next, they hash the initial commit using 16 The details differ between Git and

Mercurial but the overall process works
out the same.

all the file hashes and the work-tree layout as part of the metadata for
the initial commit. This gives them the GUID for that initial commit.
Since the hash depends on every input bit, and the input bits include
the file checksums, file names,17 and tree setup, the VCS can simply 17 Recall from Chapter 3 that some UTF-

8 encoded file names may use different
byte sequences on different operating
systems. As you might suspect, this
causes all kinds of interesting problems.

check whether re-hashing the root commit—whether extracted to
a new work-tree, or simply as stored in the repository—matches
its GUID. If so, everything is intact. (If not, the VCS cannot on its
own help you reconstruct the data, but if the repository has been
distributed there is probably a good copy available somewhere.)

Next, for each subsequent commit or changeset, both VCSes build
the new GUID by hashing not just the new file-and-tree contents (Git)
or changeset (Mercurial) itself, but also the new commit’s metadata,
including the GUIDs of its parent commits. In other words, the GUID of
the second commit depends on the GUID of the root commit. Chang-
ing the root commit changes its GUID, which changes the second
commit’s GUID. Similarly, assuming the third commit is in linear se-
quence (i.e., neither a merge nor a new branch off the root), its GUID
depends on the GUID of the second commit. Changing either the
root or second commit changes the second commit’s GUID, which
changes the third commit’s GUID. The fourth commit depends on
the third, and so on. The GUID of a merge depends not only on the
merge’s result, but also on the GUIDs of both parents.18 18 Or all parents, for Git’s octopus

merges. We’ll leave octopus merge for
later.

This kind of sequence of dependent hashes is called a hash chain
when it is linear, or a hash tree when it is hierarchical and forms a
tree. (The term hash list is also used when there is no hierarchy in-
volved. In our case, the hashes are in a DAG and perhaps should be
called a hash DAG, but it is still called a hash tree.) Hash trees are
also called Merkle trees after their inventor, Ralph Merkle. Random facts I found interesting:

Bitcoin uses Merkle trees to protect
transaction history. Curiously, while
the block chains use SHA-256, the
transaction signatures use elliptic curve
cryptography, which has a different
approach to one-way hashing. In any
case, Merkle trees are agnostic to the
underlying hash.

In short, each commit GUID is not only a global identifier, but
also a verifying checksum, not just of the specific commit, but of
the entire history leading to that commit. This means both Git and
Mercurial can and do check data integrity with every repository
extraction. Of course, verifying one particular commit may not detect
silent corruption elsewhere in the repository, but both VCSes have
maintenance commands to examine and thereby verify every commit.



distributing repositories 77

Note: Readers not interested in details regarding hash collisions,
whether accidental or malicious, may skip the rest of this chapter.

Hashing and accidental collisions

We define a uniform hash function as a function h(k) such that for
any key k, the probability of producing any one particular h(k) from
the set of all possible hashes, whose output range r = |{h(k)}|,
should be about the same as the probability of generating any other
output hash. That is, each hash output is used with a frequency of
1/r. This means that given two distinct keys, the chance of a colli-
sion is also 1/r. We will use the probability of uniqueness, i.e., the
complement of the probability of a collision, so that we may multi-
ply probabilities as we iterate over keys. We call the probability of a
collision p, so its complement, in this case 1− (1/r), is p̄.

There are a number of ways to quanitfy the overall probability
of uniqueness (and hence probability of hash collisions). I uses the
method below as it is rather elegant, and seems sufficient.

If n is the number of distinct keys k0, k1, . . . , kn−1, the probability
that all keys are unique is:

p̄(n) =
n−1

∏
k=1

(
1− k

r

)
(4.1)

Each term in the product in Equation 4.1 is the probability that the
hash of the k-th key is unique, i.e., the complement of the probability
of a collision with any prior hash. The first key k = 0 is automatically
unique, and for subsequent keys, we assume there are k unique prior
hashes occupying the range r, so we have a k/r chance of colliding
with them. The complement, 1− (k/r), is the probability that this
key results in another unique hash. The overall probability is then the
product of each individual probability.

(This is usually written with a constraint n ≤ r, since if n > r, the
Pigeonhole Principle guarantees a collision. When n > r, though,
we get 1 − (r/r) = 1 − 1 = 0 for the term with k = r, which
forces p̄(n) to zero. The n ≤ r constraint is therefore unnecessary.
On the other hand, the assumption that all prior hashes are unique
introduces a bit of error, since any prior non-unique hashes open
up more of the range. We ignore this since an earlier collision is just
as much of a problem for us as a collision for key k. However, the
fact that each term is, on its own, a slight over-estimate helps make
up for the other issue noted below. In any case, after we make our
approximation substitution below, we will ultimately find a much
stronger constraint: we will want n to stay much smaller than r.)

Observe that as the number of keys grows, the overall probability



78 distributed version control with git and mercurial

of uniqueness for all our hashes shrinks geometrically. In theory we
could simply compute p̄(n) exactly, even for large values of r and n,
but it is easier—and ultimately more useful—to use an approxima-
tion. We note that for x � 1, ex ≈ 1+ x. (The value (1+ x) here is just
the first two terms in the Taylor expansion of ex at zero.) This means
that in Equation 4.1, we can replace 1− (k/r) with e−k/r:

p̄(n) ≈
n−1

∏
k=1

e−k/r (4.2)

At first sight this may not help, but note that for x 6= 0, xaxb =

xa+b. The product of all of these ea terms is just e raised to the sum
of the terms. We also know ∑n−1

k=1 k = n(n − 1)/2 (this identity is
very common in big-O analysis of algorithm runtimes, for instance).
Hence:

p̄(n) ≈
n−1

∏
k=1

e−k/r

≈ e(−1/r)∑n−1
k=1 k

≈ e(−1/r)n(n−1)/2 (4.3)

Simplifying the exponent in Equation 4.3 slightly gives the closed
form approximation:

p̄(n) ≈ e−(n(n−1))/(2r) (4.4)

We must, however, also note here e−x > 1− x when x > 0. When
we replaced 1 − (k/r) with e−k/r we increased each term’s value
slightly. Since we are computing our margin of safety, raising the
value of each term, however slightly, overestimates the safety of each
added key. As long as we keep n small with respect to r, the error
is certainly small (the remainder polynomial from the same Taylor
expansion together with the Mean Value Theorem tells us that each
overestimate here is (eξ/2)x2 for some 0 ≤ ξ ≤ x), but I need in-
put from a real mathematician to say more about it. For now, the
equations below use inequality rather than approximation.

Using Equation 4.4, we can produce several more-useful equations.
For instance, given any particular fixed hash range r and desired
chance of avoiding collisions p̄(n), we can find the maximum number
of keys n before falling below our allowed safety margin:



distributing repositories 79

p̄(n) < e−(n(n−1))/(2r)

1/ p̄(n) > en(n−1)/(2r)

ln(1/ p̄(n)) > n(n− 1)/(2r)

2r ln(1/ p̄(n)) > n2 − n

0 > n2 − n− 2r ln(1/ p̄(n)) (4.5)

Once we choose our target value for p̄(n), we can just write it in
as a constant U (0 < U ≤ 1). The right hand side of Equation 4.5
becomes a standard quadratic equation of the form ax2 + bx + c with
a = 1, b = −1, and c = −2r ln(1/U). We need only the positive root
from the usual (−b±

√
b2 − 4ac)/2a expression, so:

n <
1 +

√
1 + 8r ln(1/U)

2
(4.6)

For instance, if we want to find the number of keys n that gives
about a 50% chance of an SHA-1 collision, we set U = 0.5, giving
ln(1/0.5) = ln 2 (for concreteness, ln 2 ≈ 0.693), and set r = 2160.
Plugging these in to Equation 4.6:

n <
1 +
√

1 + 8 · 2160 ln 2
2

= 1.4234× 1024

which is pretty close to 280 (280 = 1.2089 . . . 1024). That is, our maxi-
mum number of keys before a collision becomes at least 50% likely is
about 280: just half as many bits as in the hash function.

In fact, from Equation 4.6, we can see that—as in this case—
whenever ln(1/U) is small, but not vanishingly so, the range r dom-
inates in the square root expression. Since

√
2N = 2N/2, whenever

there are N bits in the hash output, we become more likely than not
to get collisions after hashing about 2N/2 keys. In cryptography, the
term collision resistance is defined as a variation of this property: that
we cannot find any pair of distinct messages M and M′ for which
h(M) = h(M′) without doing about 2N/2 work. All cryptographic
message digest algorithms, including SHA-1 and SHA-256, are de-
signed to have good collision resistance.

Of course, if our hashes are so important, we would like a much-
better-than-50%-chance reassurance that our GUIDs will all remain
unique. Plugging in higher values for U reduces the maximum num-
ber of keys (or messages) n even further: as U approaches 1 (from
below), 1/U approaches 1 (from above) and therefore ln(1/U) ap-
proaches zero.19 This eats away at our range r as ln(1/U) starts to

19 In fact, we can approximate this—
and in the process see the approach to
0—for x near 1 using another Taylor
expansion, this time of ln x at 1. The
first two terms are ln 1 + (1/1)(x− 1) =
x− 1. Hence for x = 1 + ε, ln x ≈ ε.

vanish. We can express our collision safety20 in terms similar to error

20 The term collision resistance seems
natural here as well, but it is taken.
“Collision safety” is not a defined
technical term, just I something made
up here for convenience.

rates quoted—albeit not actually achieved—for storage media, such



80 distributed version control with git and mercurial

as 10−18 (see, e.g., Rosenthal [2010]). For our 160-bit SHA-1, to obtain
this margin of safety we need to limit the number of keys to about
1.71× 1015 or 1.71 quadrillion. Raising the safety margin by an addi-
tional factor of 10 (setting p̄(n) = 1− 10−19) reduces our maximum
number of allowed keys to about 541 trillion, which is about a factor
of 3. (These much-lower values for n also reassure us that n � r, so
that our approximations are good.)

Hashing and deliberate collisions

Loosely speaking, an invertible hash is one where, given some partic-
ular message M and hash output H = h(M), it is easy to construct
some message M′ for which h(M′) = H. In cryptography, this idea
is formalized into two properties: preimage resistance means that it is
difficult to find any message producing a known digest, while second
preimage resistance means that it is difficult to find a second message
producing the same known digest as an existing, known first mes-
sage. If the digest is used as a signature corroborating a message,
preimage resistance means the Bad Guys cannot construct a message
just from the signature—this could be the actual original message,
or not—while second preimage resistance means that the Bad Guys
cannot replace the real message with a fake one, even if they know the
real message.

In our case, we are mainly concerned with this second preimage
resistance: if we have a procedure for finding M′ in any reasonable
time, we can disrupt the proper function of both Git and Mercurial
by finding a new message that produces a hash collision with an
existing Git object or Mercurial changeset. Note, though, that finding
a hash collision for any two files is sufficient to cause problems for
Git.

(The actual failure mode for Git is—or at least, is intended to be—
that the new object is simply not stored, regardless of whether it is
locally-generated or is brought in over the wire by push or fetch.
Thus, to get a more serious failure, the Bad Guy must insert it into
the repository before the real object goes in. In Mercurial, changesets
with non-unique IDs can still be added locally, but will no longer
transfer to other repositories.)

SHA-1 originally appeared to satisfy all of our conditions. How-
ever, in 2005, one group of researchers [Wang et al., 2005] showed
a method for constructing collisions under SHA-1 in less time than
originally expected (by about a factor of 211), and another [Kelsey
and Schneier, 2005] showed a method for constructing second preim-
ages using less work than originally expected. As of 2014, SHA-1 is
no longer approved for United States Federal digital signature pur-



distributing repositories 81

poses (see Dang [2012], p. 11 and Barker and Roginsky [2015], p. 14).
It is now possible, albeit expensive, to produce a deliberate SHA-1
collision [Stevens et al., 2017]. The example PDF produced in 2017

does not break Git because Git adds a prefix to each blob, but the
same technique could be used to produce a deliberate collision. In
any case, SHA-256 still provides enough bits to be considered secure.

Note that poisoning either Git or Mercurial is not as easy as find-
ing any message M′, since it must have a form that the VCS will see
as a valid object or changeset. Certainly, in the absence of deliberate
attacks, SHA-1 suffices for both unique IDs and corruption detection.
However, the fact that SHA-1 is not as secure as originally thought
does suggest that Mercurial’s provision to allow for SHA-256 was a
good idea.





5
Basic setup and viewing

Now that we have the basic concepts of DAGs, branches, and com-
mits, and what it means to share a repository, we would like to cre-
ate, share, and clone some repositories. Unfortunately, there are
several things we need to set up first.1 We will at least get to clone 1 There are many details and stumbling

blocks here. If you are already very
familiar with the shells and text-file
editors available on your operating
system, this chapter should be easy. If
not, it may be quite frustrating.

the repositories for our version control systems, though, and by the
end of this chapter, you will be able to do some basic configuration
and viewing of a repository.

Configuration mechanisms

Both version control systems have three separate configuration mech-
anisms: configuration files, environment variables, and command-line
options. The third is the simplest, since command-line options apply
to the command you just entered and therefore override everything
else. For instance, with the git log command, the option -p sets
the “show a patch” mode. You will only want this sometimes, so you
will only specify -p sometimes. Similarly, hg log --color auto sets
the “use color” option to automatically detect when to use color: but
you probably want this every time. If you had to specify this every
time, that would be inconvenient, so there are more permanent—or
persistent—ways to specify configurations.

One might think a single persistent configuration mechanism
would suffice, and it probably would. It would certainly be simpler
to explain. But it is not, in general, how programs behave on the
systems on which Git and Mercurial grew up, and they now take
advantage of this—so we must delve into the topic of environment
variables.

When you log in to the system, or start a Terminal session in a
window, you get a command line interpreter, which the system calls
a shell.2 The shell prints a prompt, such as bash$ or sh-3.2$ , and

2 You can choose which shell you
prefer from those available for or on
your system. Common shells include
bash, csh, dash, ksh, sh, tcsh, and
zsh. Most shells share features such
as using dollar-sign $ to denote shell
variables, and asterisk * for globbing,
which we will define later. Some treat
other characters specially. For instance,
several use exclamation points to
access shell history. Some use the curly
braces {} for special purposes and may
therefore “eat” them where you might
not expect this. You will need to learn
which characters need special quoting
in whichever shell you choose. As a
general rule, the backslash \ works to
quote any character, so if your shell
eats braces and you want to print an
asterisk inside braces, you might enter
the command echo \{\*\} .

lets you enter commands. Each command you run gets its own envi-
ronment, which that command automatically copies out to commands



84 distributed version control with git and mercurial

it runs. The commands themselves form a process tree: when Git runs
commands A and B, and B runs command C, Git sits at the top of this
particular tree,3 passing an environment to A and B, and B sits atop 3 In fact, your command-line interpreter

is really at the top, in charge of Git.C, passing an environment to C. Another way to view this tree is as
matryoshka (Russian nesting dolls). Processes higher in the process
tree are “outer” and processes lower are “further in.”

Each process can change its own environment; from that point for-
ward, these new settings are passed to new, further-in commands
that the outer command starts. Once started, however, each com-
mand has its own private environment. No inner command can affect
any outer one, nor can it change the settings in something it has al-
ready started. Hence if you set an environment variable in your shell
and then run a command, that command inherits this setting.

Most shells allow you to set a variable for the duration of a single
command (and hence any sub-command it runs):

var=value command arg1 arg2 ...

Again, this might seem a bit silly: if the command inspects an en-
vironment variable to affect its behavior, why not provide the com-
mand with an argument that affects its behavior instead? There are
two reasons to use an environment variable, though, one of which
should be clear enough: suppose the command you run, such as
git show , runs some other command, such as less . If the sub-

command reads its environment, you can “smuggle” some settings
through the outer git show command into the inner less com-
mand and Git does not have to know that they exist, much less what
they do.

The other reason to use environment variables is to affect com-
mands in more obscure ways, where either no command option is
available, or you wish to affect several commands in a row. To accom-
plish the latter, you set the environment variable using a shell built-in
command:

export var=value

(the syntax varies a bit in some shells). Next, you run the several
commands. Last, you restore the previous environment, so that no
additional commands are affected:

unset var

or re-export with its previous setting.
It is pretty common in shell scripts, which are scripts the command

line interpreter can run by spinning off a sub-shell process,4 to set

4 Scripts should indicate which shell
interprets them with their first line,
which resembles a comment in most
shells and which all shells know how
to skip. Hence most scripts begin
with a line reading #!/bin/sh. You
can write scripts in other languages
as well, e.g., beginning one with
#!/usr/bin/env python to write
one in Python rather than shell. The
reason for using /usr/bin/env here is
to allow the env command to find the
Python interpreter, whose location in
the file system tends to vary.

environment variables for the duration of the entire script. When the
script is done, the sub-shell terminates. The outer shell’s environment



basic setup and viewing 85

is unaffected, since this is a separate process. This same technique
works everywhere, including in Python programs. (Mercurial is
written in Python and it is sometimes useful to write Python code to
extend Mercurial in various ways.)

Any settings that you wish to retain permanently, across multiple
logins or in separate Terminal windows, you should, of course, save
to configuration files. This is what we will do now.

Configuring your identity

When you create commits, both Git and Mercurial save your iden-
tity as the author and/or committer. These are part of the metadata
stored with each commit.5 We’ll see how to view this metadata in a 5 Git stores a separate author and

committer, while Mercurial stores
just one name. Git’s method allows
for separate accountability with, e.g.,
emailed patches. Mercurial simply
assumes that all authors have direct
access to the repository; if you will
make a commit on behalf of someone
else, it is up to you whether and how
to put the author’s information into the
commit.

moment. For now, let’s see how to set it.
Both Git and Mercurial use the same identity format: your real

name, and your email address. For no particular reason, Git splits
this into two configuration entries, while Mercurial uses one. Neither
system will check whether you are telling the truth about user name
or email. If you want to claim to be Barack Obama, who are VCSes to
say you are not?6 Replace the user name and email address here with

6 Later, we’ll see how to digitally sign
your work. This will allow other people
to test whether a commit with your
name on it is really something from
you, or from some imposter.

the one(s) you want to use:

git config --global user.name ’Your Name’
git config --global user.email ’email@example.com’

or
hg config --edit

then add
[ui]
username = Your Name <email@example.com>

(For Mercurial, you may want to read ahead for a bit to find out how
to choose your editor while using hg config --edit .) From now
on, unless overridden by a less-global setting, the VCS will use this
as your identity. You can change these at any time: a new config

command (or editing the configuration) will change the stored value.
This will not affect any existing commits; only new ones will pick up
your new identity.

Incidentally, this general form—the name of the VCS, either git

or hg —followed by a verb, then options and/or additional argu-
ments, is how both VCSes are set up today. Very old versions of Git
used instead a git- prefix, so instead of git config , you would
run git-config . Git’s documentation still works this way: the docu-
mentation for git config is named “git-config”, for instance.



86 distributed version control with git and mercurial

Additional configuration

For most users, I recommend setting both the pager (usually to use
less —you may want to add options such as -S, as shown here), and

automatic colors as well:

git config --global core.pager ’less -S’
git config --global color.branch auto
git config --global color.diff auto

or
hg config --edit

then add
[extensions]
pager = LESS="FRSX" less
color =

The color remarks below assume you have enabled color. The pager
setting here for Mercurial includes the -F, -R, and -X options in the
environment, whlie the setting for Git does not, because Git has
special code that puts LESS="FRX" in the environment, provided the
environment variable is not already set.7 7 I honestly have no idea why Git does

it this way, but note that if you want to
prevent this FRX setting, you can set the
environment variable to something. Of
course, command line options override,
so you can, e.g., set core.pager to
’less -S +FRX’ to clear them—but you
probably do want -FRX.

There is one other value you may wish to configure immediately,
which is the command that the VCS should use to open your fa-
vorite editor. In Git this is the core.editor setting, and in Mercu-
rial this is the ui.editor setting.8 If you do not set it, the VCS falls

8 Mercurial used to let you update your
configurations using hg config without
invoking an editor, but now requires
that you run hg config --edit. This
results in a chicken-and-egg problem:
how do you tell Mercurial which editor
to use until you use an editor to edit
the configuration? The secret is to use
--config ui.editor=editor.

back to other methods to choose an editor (the specifics vary de-
pending on your system). Once you have set it, though, you can run
git config --global --edit or hg config --edit to open up

this particular editor on your user-specific configuration file, which
will let you edit particular entries to fix typos without having to re-
run command-line commands:9

9 You only need quotes around the
editor argument if you are supplying
option arguments as well, or if the path
to the editor contains spaces, but the
quotes won’t hurt in general.

git config --global core.editor ’your chosen editor’
git config --global --edit

or
hg --config ui.editor=’your chosen editor’ config --edit

then add to the [ui] section
editor = your chosen editor

Try these out to make sure the editor starts correctly. This will also
show you the layout of the configuration files, which should be fairly
obvious. You can now fix any typos in your name and email address,
for instance. Note that the short form name section.setting con-
verts to the longer [section] and then setting = value form in both
VCSes.

Git and Mercurial both have three levels of configuration setting.10 10 Git adds a fourth level, --file, which
is only needed if you are going to write
Git scripts of your own and want to
borrow its configuration code but not
use any standard configuration file.

Unfortunately, the two VCSes use different options to select among
these, with some of the option names matching but with different
meanings. (I get them mixed up when switching between VCSes.)



basic setup and viewing 87

• Machine-level: all users on a shared machine. To select this in Git,
use --system; in Mercurial, use --global. You will only need this
option if you are a system administrator, configuring settings that
affect all users of a shared machine.

• User-specific: settings for you, when you are logged in. To select
this in Git, use --global. In Mercurial, there is no option to select
it: you get it by not specifying any option.

• Repository-specific: the current repository only. To select this in
both Git and Mercurial, use --local. If you select no option, this is
Git’s default, but not Mercurial’s.

The repository-specific setting is particularly useful if you want dif-
ferent email addresses for different repositories (e.g., for separating
work and home projects). In Git, it can also be crucial for controlling
the fetch refspecs (we will see these later, in Chapter XXX or wher-
ever it winds up). Note that your current repository is defined by
your current working directory, i.e., the directory as reported by
the Unix/Linux pwd command. This will be either the top level di-
rectory of your VCS’s work-tree, or a subdirectory of that. As you
move from one repository to another, repository-specific settings will
change automatically.

There are many more settings you can configure. We will address
these later, as they come up.

Viewing

Viewing commits is just as important as creating them: if you cannot
see what is committed, how will you see what anyone has done so
far, much less plan what to do next? Here Git and Mercurial have
somewhat different philosophies.

Mercurial stores each commit sequentially—locally sequentially,
that is; remember from Chapter 2 that these sequential numbers are
valid only within a single repository. These locally-sequential re-
vision numbers make it easy for Mercurial to show you the entire
history, starting with the highest numbered one and working back-
wards through the entire repository. This is what Mercurial does by
default when you use hg log . This behavior is friendly and useful
to those new to the system,11 since it means that—unlike in Git—you

11 This is somewhat of a general theme:
Mercurial is more friendly to new
users, while Git assumes everyone
starts out highly advanced. Since both
systems are configurable, Mercurial’s
base assumption is probably superior:
advanced users can configure it as
needed, while new users get friendly
behavior.

will never be confused by “missing” commits.
Git, on the other hand, has just the GUIDs and graph, along with

the external references we mentioned in Chapter 2. It has no Mercurial-
like way to traverse every commit in the order (or reverse-order) it
appears in the repository. In fact, there is no Mercurial-like order: ob-
jects within a Git repository are simply found directly by hash ID.12

12 That is, the Git repository acts as a
database where each key is a hash IDs,
and the value is the corresponding
object.



88 distributed version control with git and mercurial

For Git to show you all history, then, you must tell it to look at all
references (with the --all option). By default, it starts instead from
what it calls the HEAD. The HEAD is how Git keeps track of the current
branch; we’ll see more about this in just a moment. This also works
well enough for new users: you see commits on your branch, and
if you change to another branch, you see commits on that branch.
However, it can be quite alarming when you get into what Git calls
“detached HEAD” mode. We’ll describe this mode in detail later;
for now, just be aware that it can result in commit history seeming to
disappear.

Get the repository for Git or Mercurial itself

In order to test out some of the viewing commands, you may want
to download some large and complex repositories. The ones for the
two VCSes themselves are useful here. We’ll describe these clone

commands in more detail later. For now, as in the xkcd comic, “just
type [these shell commands] to sync up.”

git clone git://github.com/git/git.git
or

hg clone http://www.mercurial-scm.org/hg

The git clone command creates a clone of the Git source into a
new directory named git. The hg clone command creates a clone
of the Mercurial source into a new directory named hg.

Viewing branches

The front-end commands git branch and hg branches show you
all your branches. Git prefixes the current one with an asterisk, and
both color the current branch green as well.13 To see just the cur- 13 You can configure the colors differ-

ently if you like; and as we already
noted, you must enable colors in your
configuration.

rent branch in Mercurial, use hg branch . Git has no user oriented
front end command to print just the current branch (although some
of its internal commands will do it, and we’ll see the git status

command soon, which also shows you your current branch).
If we do this with the Git and Mercurial clones we just made, we

will see just this:

* master

for Git, and something like this (the revision numbers will vary):

default 28533:dfd5a6830ea7
stable 28518:aa440c3d7c5d (inactive)



basic setup and viewing 89

for Mercurial. The fact that Git shows only one branch while Mer-
curial shows two may initially be surprising,14 but remember from 14 More surprising, I think, is the fact

that the Mercurial repository has just
the two branches. I think this really
illustrates that Mercurial’s global
branches are not such a great idea after
all. Some public Mercurial repositories
have more branches—for instance, the
one for CPython has one branch per
release—but nothing like Git’s usual
profusion.

Chapter 4 that Git uses remote-tracking branches, instead of Mercurial-
style global branches. We can ask Git to show us these remote-
tracking branches using git branch -r , producing something like
this (the set of branch names may change over time):

origin/HEAD -> origin/master
origin/maint
origin/master
origin/next
origin/pu
origin/todo

We’ll see later how it is that we got a master branch even though we
have not made any commits of our own.

Current branch and current revision

Both Git and Mercurial have the notion of a current branch, and a
current revision or current commit.

The latter naturally implies the former in Mercurial: given that
some commit is the current revision, and that a commit can only be
on one branch, that branch must also be current. In fact, this principle
holds in general: if you specify a revision where Mercurial needs a
branch, Mercurial uses the branch containing the revision. In Mer-
curial, the current revision is spelled . (that’s a period by itself), and
hence . also refers to the current branch.

In Git, any commit may be on multiple branches at once, so “cur-
rent commit” does not automatically define “current branch” this
way. Nonetheless, Git still combines the two ideas. The result is that
you can use the name HEAD to refer to either the current branch or
the current revision.15 This name takes on the desired meaning au- 15 This means you should not try to

name a branch “HEAD”. It is not
strictly forbidden, and it will not break
Git itself, but it will be confusing, like
a party where all the men are named
Bruce.

tomatically. Since Git version 1.8.5 you can also use the name @ (an
unadorned at-sign). We will stick with HEAD here, but feel free to use
@ if you prefer (and your Git is not too old).

Git’s HEAD

You may, of course, also refer to the current branch by its branch
name. There is one exception in Git: if you are on no branch, the
“detached HEAD” has no corresponding branch name. Let’s take
a moment to describe how HEAD works, and how detached HEAD
mode differs.

In Git, the reference HEAD is very special. It is stored in a file in
the top level of the .git directory. In fact, it’s so special that if you



90 distributed version control with git and mercurial

manage to delete this file, Git will stop believing that the repository
is a repository.

Normally, the contents of this file are the literal word ref: fol-
lowed by the name of the current branch, spelled out as a full ex-
ternal reference, such as refs/heads/master.16 In what Git calls 16 In very old versions of Git, the HEAD

file was actually a symbolic link to
the branch’s file, which was stored in
refs/heads/. Opening the symbolic
link and reading or writing its contents
obtained or updated the hash. This had
to be changed when Git was ported
to Windows, which only supports
symbolic links in NTFS.

“detached HEAD” mode, however, the file contains instead a com-
mit hash. This is quite literally the difference between being “on a
branch” and not. Thus, while “detached HEAD” may sound scary,
like something out of the French Revolution involving guillotines,
it simply means that HEAD is no longer connected to a branch. This
affects many other things, but for the moment, we will concentrate on
commit viewing.

Viewing commits

Both Git and Mercurial use the log command to show commits. As
we already noted, when run with no options, git log will show
commits reachable from HEAD. Mercurial’s hg log will show all
commits, in reverse order. There is an important point hiding here in
plain sight: Mercurial shows commits in reverse order. What order does Git
use?

The answer to this is a bit tricky: we already noted that there is no
overall repository order. When—and only when— git log has two
or more commits it could show next,17 it normally sorts them by their 17 This condition means that in most

cases, Git will show the commits in
the right order anyway. At each point
it is showing a commit, Git has only
one commit to show. It shows that
one commit and then walks to the
previous commit. When you walk
through merges, though, or if you
attach a reference name to a future-
dated commit and then use git log

--all, the newest or most-future-dated
commit comes out first.

commit time-stamp, with the most recent commits being shown first. In
normal operation, this tends to be what you want, since your own
commits are made in normal, Einstein-ignoring,18 global time order:

18 If two commits are made fast enough,
or far enough apart, observers will
not be able to agree which commit
was actually first. More practically,
Git’s time stamps count in units of
seconds. Commits made within a
single second can sort into apparently-
random order. This is not purely
theoretical: a StackOverflow question
[stevemao, 2015] noted that adding
--tags changed the order of commits
shown without changing the set of
commits shown. This is a special case of
the future-dated commit issue we just
mentioned.

you make one commit, then you make another, and the second one is
made later than the first.

Even if your own computer’s clock is well behaved, Git is dis-
tributed, and you can pick up commits from other computers whose
clocks are not. It’s easy to pick up commits which—although they
happened in one order—have time stamps that can arrange them into
a different order. In these tough cases, Git will, by default, show them
to you in the order they claim to have been committed. (You can also
deliberately change the author and/or committer time stamps of a
commit before you make it.) For instance, if your co-worker’s com-
puter puts a month-old time stamp on a new commit, that commit
may be shown one month back, buried in any other commits done
at that time. This is still true even if it’s your computer that uses the
month-old time stamp by mistake, though now it’s your commit that
is buried one month deep in the log. This point may seem obscure
or irrelevant, until it actually happens to you and messes with your
git log output.



basic setup and viewing 91

Graphical viewers will often show commits in strict topological
order rather than in commit-time-stamp order. You can make Git do
this yourself using the --topo-order flag. (Refer back to topological
sorting in Chapter 2. Note that there may be multiple valid topo-
logical sorts. Git currently does not make any promises as to which
one it will use.) Using the --graph option to git log 19 also sets the 19 The key takeaway here is that if you

find Git giving you you weird and
confusing logs, using --graph forces Git
not to mislead you. Any time you have
a complex graph, you may want to try
this option.

topological sort flag, in addition to telling Git to draw the commit
graph.

Mercurial, by contrast, maintains its highest-to-lowest internal
number order, even when using hg log --graph . You can direct
Mercurial to use another order by specifying which revisions to show.
For instance, when using a range selector like -r0:3, Mercurial will
show the commits in ascending order (-r3:0 shows them in descend-
ing order).

Sample log output

Let’s take a brief look at some actual commits. (I chose relatively
short, recent but not too recent, ordinary non-merge commits for
these.) Here is one from the Git source:

commit b42ca3dd0f157d0c23c9a034bc68257e1748238a
Author: Junio C Hamano <gitster@pobox.com>
Date: Wed Oct 28 13:38:56 2015 -0700

cat-file: read batch stream with strbuf_getline()

It is possible to prepare a text file with a DOS editor and feed it
as a batch command stream to the command.

Signed-off-by: Junio C Hamano <gitster@pobox.com>

Note that Git shows us the commit’s author and date, but not the
committer and commit-date. (To see those we would need to specify
a different log output format.) We also see the commit’s log message,
indented by four spaces. The log message has the form of a short
subject line, followed by a blank line, followed by a longer descrip-
tion of what the commit does (and in this case, ended with one or
more “Signed-off-by” lines, which Git can add automatically; not all
projects use this feature).

Here is a similar commit from the Mercurial source:20 20 Both of these commits have good
commit messages. We’ll examine just
what makes them “good” in more
detail later.

changeset: 27373:84784f834b3a
user: Gregory Szorc <gregory.szorc@gmail.com>
date: Sun Dec 13 11:27:52 2015 -0800
summary: help: add documentation for bundle types

The format is essentially the same as Git’s, except that by default,
Mercurial shows only the one-line summary (subject). Examining the



92 distributed version control with git and mercurial

same commit in more detail—we’ll see just how to do this later—we
would find the full commit description to read:

help: add documentation for bundle types

Bundle types and the high-level data format of each bundle isn’t
documented anywhere. Let’s document this as well.

Obviously there are many more details about bundles that could be
written about. But you have to start somewhere.

For now, note how similar these outputs are: we see the commit’s ID,
the commit’s author and date, and a log message.

Limiting or augmenting the commits shown

What if, in Git, you want to see more branches? The log command
accepts branch names as arguments. If you give at least one, Git will
not start from HEAD, but only from the branch or branches you give as
arguments.21 For instance, when looking at the Git source repository 21 This is wrong in a technical, nitty-

detail way: git log first translates
from name to commit hash, then selects
that commit with ancestry so as to
walk through the commit graph, hence
showing the branch. That is, git log

doesn’t “start from the branch” at
all, but rather from the branch tip. We
covered this back in Chapter 2, but it’s
worth repeating, and we will see it all
yet again soon.

we just cloned, using git log origin/next origin/maint will
ignore HEAD and show us commits reachable from origin/next and
origin/maint instead. As before, these will be sorted in commit
timestamp order unless we direct Git otherwise.

What if, in Mercurial, you want to see fewer branches? In partic-
ular, you might very often want Git’s behavior of showing you just
your current branch, rather than every branch. In this case, you must
add a specifier that selects the desired branch. Since . is the current
revision (which is on the current branch), and hg log -b takes a
branch name, hg log -b . does the trick. (You can also spell this
hg log -r ’branch(.)’ but this sorts the commits starting from

revision 0, so that you need hg log -r ’reverse(branch(.))’ in-
stead.)

Viewing with a detached HEAD

As we just saw, git log starts from HEAD by default. Suppose
that you are on branch master, and you decide you need to look
at the code the way it was a month or more ago. You can use the
command git log to find an old commit—we saw one just re-
cently: b42ca3d... in the Git source—and then check it out, using
git checkout b42ca3d (you can abbreviate these hash values). Git

prints out a large warning beginning with:

Note: checking out ’b42ca3d’.

You are in ’detached HEAD’ state. ...



basic setup and viewing 93

Now that HEAD points directly to commit b42ca3d, git log shows
commits working back from October 28, 2015. All the newer commits
seem to have vanished! No worries, though: git checkout master

brings them all back into view, or of course we could use git log master

to see them.





6
Getting started

We are finally ready to get started in both Git and Mercurial. We will
examine two different startup scenarios: creating a new project, and
cloning an existing project that we will work on and contribute to.
Along the way we’ll accidentally (or not so accidentally) make some
mistakes, just to show how to recover from them.

This is also where Git and Mercurial first begin to diverge in the
way they are used. We will cover both here, but we will see some
differences immediately.

By the end of the chapter, you will be able to create and/or clone
a project, make new commits in a repository, fix silly mistakes in any
just made-commit, and detect whether you need to make a new com-
mit. You will be able to create a new branch, and to switch from one
branch to another. For Git, you will learn the special—and slightly
crazy—way it deals with the fact that branch names are not global
and permanent, as we saw back in Chapter 4. You will learn some of
the tricks needed to identify specific commits, namely those that are
not branch tips (Git) or heads (Mercurial). Perhaps most importantly,
you should begin to understand how and why the commit DAG
grows, accumulating new history, as you make new commits.

New projects: create, commit, and view commits

Both Git and Mercurial initialize new projects with the init verb,
which should be run in a freshly created directory:

mkdir project
cd project

then one of these:
git init
hg init

Either one creates a new repository1 and sets things up so that

1 Git’s init can be used in an existing
repository. This is harmless—it won’t
touch any existing work—but not
useful to us yet. Mercurial’s init

refuses to do anything in an existing
repository, so is also harmless.

your first commit will create the VCS’s default branch: master in Git,
or default in Mercurial. (You must pick one particular VCS now,



96 distributed version control with git and mercurial

or at least, one per project—you could make a project.git and a
project.hg, for instance.)

With both systems, you now create whatever files you want to
have in the first commit. Including a file named README is often a
good idea, so let’s create one now, with something in it.2 2 The Git repository sharing web site

github.com suggests naming the file
README.md, where the md suffix indicates
that the file’s contents use markdown
syntax (markdown syntax is outside the
scope of this book). Github will present
these contents on the main web page
for the project.

echo Marsupial Madness > README

(If you prefer, create the README in your editor, or any other way.)
Next, you must explicitly add this file, so that the VCS knows it

should include it in the next commit. Here Git and Mercurial differ:
Git requires you to git add every file every time you want it to be
updated with the next commit, while Mercurial needs just one hg

add, the first time you create the file. After that, if you have edited
the file, the next Mercurial commit will automatically include any
changes you made to the file. Which method is “better” is a matter of
taste, and the Git and Mercurial authors both consider this difference
a feature in their favor.3 For now, since README is new, it makes no 3 We will see why the two systems

behave like this, and how to control
it in more detail, in Chapter 7. Either
system allows the other one’s behavior,
so both systems are in fact equally
capable.

real difference. Use the obvious one of:

git add README
hg add README

We are now ready to make our first commit, which will create the
branch:

git commit
hg commit

This will bring up your editor, specifically the one you selected with
core.editor or ui.editor. It is your job now to enter a good commit
message, write out the file, and exit the editor.4 We’ll see how to 4 Some editors, such as some varieties of

atom, emacs, and sublime, may require
you to run a special command or use
special options here. If you run the
editor directly from a shell, it may act
as an proxy agent for a window-based
variant of the editor. The window-based
editor then opens the file for editing,
and the agent immediately exits with a
success indication. Both VCSes assume
the commit message file is complete
as soon as the sub-process they spin
off also completes. Hence, instead of
running the proxy agent that exits too
soon, you must run one that waits for
a “file is done” signal. Consult your
editor’s documentation for details.

write a good commit message soon. For now, you might as well use
something like “initial commit” or even just “initial,” which you can
simply type in as a single line. Write out the file and exit your editor
to get the first commit made. (Mercurial does this silently; Git prints
something to confirm your new commit has occurred.)

Now let’s take a look at the (single) commit. We did this in Chap-
ter 5, but let’s look a bit closer.

git log
hg log

With Git, the output should resemble:

commit 5318e618785487817de1803a4395853511ee78d5
Author: Chris Torek <chris.torek@example.com>
Date: Wed Apr 19 02:45:29 2017 -0700

initial commit



getting started 97

and with Mercurial, it should look like this:

changeset: 0:1d84a50ae05f
tag: tip
user: Chris Torek <chris.torek@example.com>
date: Wed Apr 19 02:46:21 2017 -0700
summary: initial commit

Git shows you the full hash while Mercurial shows you the locally-
sequential revision number and an abbreviated hash. We only en-
tered the one subject line in the commit message, so the difference
in the log message output essentially vanishes. Finally, Mercurial
includes this slightly mysterious “tag” line; we’ll get to this later.

Let’s create one more revision so that we have two revisions to
look at in the main branch.

echo "kangaroos are large and grey" > kanga.txt
git add kanga.txt
git commit -m "add a kangaroo"

or
echo "kangaroos are large and grey" > kanga.txt
hg add kanga.txt
hg commit -m "add a kangaroo"

Since kanga.txt is new, we still have to add it in both VCSes. This
time, though, we used the -m switch, which takes a commit message.
This skips the editor session, at the cost of limiting you to a one-line
commit message.5 5 You can supply more than one

line here, but the methods are a bit
command-line-interpreter dependent,
whereas the method shown here should
work with any standard CLI.

While Mercurial is quiet when adding the new file, Git prints out a
bit of information at the end:

[master 3c345b0] add a kangaroo
1 file changed, 1 insertion(+)
create mode 100644 kanga.txt

The first line gives the branch name and an abbreviated version of
the new commit’s hash, and the one-line summary log message. The
remaining lines give a summary of what changed from this commit’s
parent commit. (If we had added more files, we would get more
“create mode . . . ” lines.)

Let’s take a look at the logs now. This time, let’s direct Git to pro-
duce the one-line summary, rather than the full message:

git log --oneline
hg log

The Git output is now:

3c345b0 add a kangaroo
5318e61 initial commit



98 distributed version control with git and mercurial

Note that Git’s one-line summary format is much more abbreviated
than Mercurial’s default. Meanwhile, Mercurial lacks a one line for-
mat.6 It does have a verbose log mode, which prints the entire com- 6 We can obtain one through what

Mercurial calls templates.mit message instead of the one line summary, but there is no point in
using it yet.

changeset: 1:d05b1df8b8f6
tag: tip
user: Chris Torek <chris.torek@example.com>
date: Wed Apr 19 02:49:21 2017 -0700
summary: add a kangaroo

changeset: 0:1d84a50ae05f
user: Chris Torek <chris.torek@example.com>
date: Wed Apr 19 02:46:21 2017 -0700
summary: initial commit

Now let’s make a new branch starting from the initial revision, so
that we have one commit on a side branch, parallel to the second
commit on the main branch. We’ll see some contrasts between Git
and Mercurial here. Our first task is to get back to that initial revi-
sion, because both VCSes default to making a new branch that starts
from whatever the current revision is.

Switching revisions

Git and Mercurial have similar methods of keeping track of your
current revision. Both of them also use a checkout command to check
out a specific revision, although Mercurial users usually call this
update. (The verbs mean exactly the same thing in Mercurial: unlike
some other VCSes, update and checkout are simply aliases for each
other. Mercurial even gives you a third name for this verb, co. Git has
just the one verb initially, although you can define as many aliases as
you like.)

When we want to check out one particular commit, the most direct
way is to name it by its raw hash ID. Both Git and Mercurial support
this. Because the hash is the GUID of that commit, it always works
to identify exactly that commit, no matter where this commit is in the
commit DAG. The drawback is that you must type in apparently-
random numbers. The good news is that you can shorten the hash:
instead of 5318e618785487817de1803a4395853511ee78d5, you can
type in 5318e61,7 but really this is not much of an improvement. I 7 The shortest Git allows is four charac-

ters, while Mercurial allows even fewer,
but whatever you type in must match
exactly one actual hash in the reposi-
tory. A four character abbreviation is
not as likely to be unique as a seven or
eight character abbreviation.

find that it works well to cut-and-paste these, but otherwise I gener-
ally try to find an alternative.

Git has many alternatives—far too many to list them all just yet.
We’ll restrict ourselves to just one for now, specifically, the syntax
that means move back one parent in the DAG. To do that, we name any



getting started 99

revision any way we like, and then append a caret or hat character.8 8 On Windows, some command line
interpreters steal the ^ character for
their own use. If you are stuck with
this, you can use ~1 instead: the tilde
character followed by the digit 1. We’ll
fill in more details for this syntax later.

Since 5318e61 is the parent of 3c345b0, writing 3c345b0^ is another
way to write 5318e61.

This hardly seems helpful—we’ve merely substituted one incom-
prehensible hash for another. But as we saw in Chapter 5, page 89,
the current revision is called HEAD in Git. Hence, all we need to do to
"back up one commit" is to write HEAD^.

Mercurial, of course, uses . instead of HEAD. Mercurial also has
those more-convenient (and initially much shorter) sequential num-
bers: the first commit is revision 0, and the second is revision 1. Since
we have just the two commits now, we know we want revision 0—but
doing this is, in a sense, cheating. In a real code base that has a lot of
development, we won’t know which revision number to use.9 In that 9 It’s tempting to run hg id -n -r . to

find the current revision number, then
subtract 1, but this eventually runs into
issues with complex DAGs.

sense, it’s better to use DAG-following operators, just as in Git.
As luck would have it, both VCSes use the same syntax for walking

back through the commit DAG. This means we can use the obvious
one of these two commands to check out the initial commit:

git checkout HEAD^
hg update -r .^

Since HEAD or . is the current commit, and suffix-^ means parent,10 10 If the commit in question is a merge
commit—remember that merge com-
mits have two or more parents in the
DAG—it means to use the commit’s
first parent. We’ll see more about this
when we get to merging.

this steps back one commit in the DAG.

Git: switching revisions

Let’s run the appropriate the command and observe the output. Git’s
is a bit scary:

Note: checking out ’HEAD^’.

You are in ’detached HEAD’ state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

git checkout -b <new-branch-name>

HEAD is now at 5318e61... initial commit

If we run git log (try it now), we now see only the first commit.
Where did our second commit go?

This is just what we mentioned in Chapter 5: git log means git
log HEAD, and git log starts from the commit you identify, then
walks backwards—never forwards—through the commit DAG to find
commits.11 Then it shows you these commits, one at a time, in some

11 In other words, log selects the spec-
ified commits with ancestry, just as we
saw in Chapter 2, page 43, and again in
Chapter 5.



100 distributed version control with git and mercurial

order. Since we moved HEAD back to the root commit, git log now
has just one commit to show.

This does make it quite easy to see that we are now on the root
commit. If you want to see more commits, not just those starting
from the current revision, you have to give more arguments or op-
tions to git log. For instance, try git log master now. However,
starting from HEAD is often what you will will want.

Meanwhile, the “detached HEAD” message is just telling us that
we are no longer on any branch.12 The branch-name master still 12 You could instead say that we are on

Git’s single special anonymous branch.
The Git documentation is reasonably
consistent about saying that we are not
on any branch, but internally, we’re just
on a branch whose only useable name
is HEAD or @.

exists but we are now off that branch, and anything we commit now
will eventually be thrown away unless we get back on a branch that
will keep it. This is, of course, the plan: we want to get on a new
branch and make a new commit, and we want the new commit’s
parent to be the root commit, where we now have this detached
HEAD.

While we are in this mode, let’s look at two more Git commands.
First, run git status and observe the output (your commit GUID
will differ, if it appears at all):

HEAD detached at 5318e61
nothing to commit, working directory clean

The exact phrasing depends on your Git version: before version 1.8.3,
the first line would just read Not currently on any branch.

Remember git status: it is a very useful command, especially
in versions of Git since 1.8.2. It improved significantly in 1.8.3, 1.8.4,
and 1.8.5 and has had minor improvements since then as well. If
you are ever in the middle of some operation, and are no longer
sure as to what is going on,13 git status should tell you where you 13 With the commands we have used so

far, things either work, or completely
fail, but when we get to merge and
rebase and the like, many commands
can stop, return you to the CLI, and
wait for instructions. You may then get
interrupted at work and forget what
you were in the middle of, for instance.
Use git status!

are and remind you how to continue, or if you prefer, terminate the
operation.

Now run git branch . The output will be something like this:

* (HEAD detached at 5318e61)
master

Again, the details will vary based on version, but the main thing is
that the starred line tells us which branch we’re on, or in this case,
not on.

Mercurial: switching revisions

Compare all this with Mercurial’s reaction to backing up one step in
the commit DAG:

0 files updated, 0 files merged, 1 files removed, 0 files unresolved



getting started 101

There is no scary message that sounds like the French Revolution is
underway and our head is in the guillotine. And in fact, we are still
on the standard default branch, which we can see with hg branch .
Let’s run that now and observe the output:

default

Mercurial has the same status command as Git, but it’s remarkably
uninteresting right now as it prints nothing at all. We can also run
hg log . Please do that now; but then observe that it prints exactly

the same thing it printed before, which is not terribly helpful. If we
want to know where we are now, we need a different command, or
maybe an option. There are two commands that will do the trick:
hg id and hg summary . Let’s try the first one first:

1d84a50ae05f

This is the abbreviated hash for our first commit (your string will
therefore be different, but look at the hg log output and note that
the hash matches that of the first commit). We can use hg id -n

instead: this prints 0, which is the sequential number assigned to the
first commit (the 0 part of 0:1d84a50ae05f). Let’s try hg summary

instead:

parent: 0:1d84a50ae05f
initial commit

branch: default
commit: (clean)
update: 1 new changesets (update)
phases: 2 draft

This prints out a lot more useful stuff. The first line, although it says
“parent”, is the current revision we have checked-out right now,
which is just what we wanted to know. The second line is the one-
line commit log summary, and the third is the current branch. We can
ignore the last several lines for now.

The other trick we can use in Mercurial is to direct hg log to show
us just the current commit, using hg log -r . to specify which revi-
sion to show. This is what I actually use most of the time, typically
with -v as well, so that I can see the full log message. Unlike Git,
Mercurial’s log does not automatically walk back through the DAG;
if we want to show more revisions, we need to use a DAG range se-
lector such as hg log -r ’ancestors(.)’ or hg log -r ::. . You
might recall these operations from Chapter 2, page 45. If not, you
may want to review that chapter soon.



102 distributed version control with git and mercurial

Creating a new branch

We’re about ready to create the new branch, but before we do, take
a look at your working directory. Note that the file kanga.txt has
disappeared. This is because you told the VCS to step back from the
branch-tip commit (where we added the file) to the initial commit
(where we did not have it).

Making the new branch is easy now that we’re on the desired
(initial) revision. We just need to ask the VCS to change to the new
branch, then make a new commit on that branch. In Git, in fact, we
don’t even need to make a new commit, because the existing initial
commit can be on two or more branches, but in Mercurial, this is
not allowed. In any case, let’s create the branch, then make a new
commit.

Git: creating a new branch

In Git, the branch command can create a new branch, but it does
not automatically switch to that branch. We could use two separate
commands:

git branch sidebr
git checkout sidebr

but we can, and might as well, combine them into one:

git checkout -b newbr oops, wrong name!

The -b option to checkout tells it to create and switch to the branch,
all at one go.14 The branch creation step uses the current, i.e., HEAD, 14 This, as it turns out, is a general

theme in Git: someone provides a
command to do something that doesn’t
quite do enough, and then there is
either an additional command added,
or more likely an option added to an
existing command, to do everything
together. The result is that many
commands do too much, making it
easy to make mistakes. Fortunately
Git makes it easy to undo mistakes.
Mercurial typically makes it much
harder to make mistakes, but often
much harder to undo them as well.

commit as the tip of the new branch, and the switch-to-branch ac-
tion of git checkout puts us back on that branch (so that our head
is firmly reattached to our shoulders). Let’s use the combined com-
mand and observe the output:

Switched to a new branch ’newbr’

Oops! I meant to name this branch sidebr, but I accidentally entered
git checkout -b newbr. Fortunately, there is no problem here. I can
either re-do the checkout with the correct branch name (which will
leave me with an extra branch that I will have to delete later), or use
git branch -m sidebr to change the name of the current branch to
sidebr. Note that git branch with no options will list all our (local)
branch names; try it before and after fixing the branch name:

git branch
git branch -m sidebr
git branch



getting started 103

Mercurial: creating a new branch

Let’s do the same in Mercurial, which also uses hg branch to change
the branch name:

hg branch newbr

The output this time is a little scary:

marked working directory as branch newbr
(branches are permanent and global, did you want a bookmark?)

Bookmarks are Mercurial’s answer to the global nature of its branches.
For now, we’ll ignore them since they make Mercurial’s usage more
complicated—in fact, more like Git’s. I made the same mistake again
though, naming the new branch newbr instead of sidebr. Fortunately,
branches in Mercurial cannot exist without a commit on them, so
to fix this, I just have to re-run the hg branch command with the
correct name. We can use the command hg branches to list all the
branches15 Mercurial has in this repository, and we will see that nei- 15 Well, all the open branches, but let’s

ignore this complication for now.ther newbr nor sidebr exist yet:

hg branch sidebr
hg branches

(you will have to run these yourself to see the output).

Both: making changes on the side branch

In Git, our new branch already exists now, pointing to the initial
commit. In Mercurial, it doesn’t exist yet, but our current revision
is the initial commit. In either case, let’s make a new commit now.
Instead of creating kanga.txt, though, let’s modify the README and
add a koala.

echo Add a line to README >> README
echo koalas look cute and cuddly > koala.txt

(Again, you can use an editor to modify the README and add the new
koala.txt file, if you prefer.)

Git’s status versus Mercurial’s

Now let’s run the VCS’s status command. We have reached a point
where Git and Mercurial differ again, and this difference is actually
helpful and instructive.

The git status output reads:



104 distributed version control with git and mercurial

On branch sidebr
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: README

Untracked files:
(use "git add <file>..." to include in what will be committed)

koala.txt

no changes added to commit (use "git add" and/or "git commit -a")

This is pretty verbose and is full of new concepts,16 but let’s compare 16 We’ll go into more detail in Chapter 7.
For now, let’s just concentrate on
getting our changes committed.

it to what Mercurial says, because both VCSes really do very similar
things. The hg status output reads:

M README
? koala.txt

This is much shorter than the Git output, but in fact, it has pretty
much the same information, and we can make Git use short output
too, using git status --short :

M README
?? koala.txt

Note that Git’s short status is still suspiciously different from Mercu-
rial’s: each file is listed with the same characters, but in Git’s output,
the question-mark is doubled. The uppercase M character, which
stands for “modified” and appears in front of README, has a leading
space in Git’s status, but not in Mercurial’s.

This all goes back to the note we made earlier where Git requires
us to git add each file before every commit. Both Git and Mercurial
mark the new koala.txt with a question mark (or two), meaning
they know nothing about this file.

When we add a file in Mercurial, this adds the file to what Mer-
curial calls its manifest. This is just a fancy word meaning list: in
this case, a list of all files Mercurial should look at when making a
new commit. The hg status command compares all the listed files
to their work-tree version, and if they are changed, hg commit will
include their changes in the next changeset (commit).

In Git, there is no manifest. Instead, Git provides a more complex
construct called the index or staging area.17 In any case, you must

17 The reason for multiple names is
mainly historical. The name index
is simply the older, original name,
while staging area is meant to describe
it better. However, the index plays
multiple roles, and sometimes “staging
area” area is misleading as well. We
will come back to this idea repeatedly.
It is considered a feature in Git, as
it allows for alternative work-flows,
but it is highly intrusive as well: Git
forces you to be aware of it. For now,
just note that Git has it, and Mercurial
doesn’t. We’ll go into much more detail
in Chapter 7.

use git add to update each file into the staging area before every
commit. It is tremendously easy to forget one, so we will do that
now, and then fix it. To make things more interesting, let’s make this
mistake in both VCSes.



getting started 105

Committing a mistake: getting our add wrong

In Git, let’s forget to add the new file, just adding the changes to the
README file:

git add README
git commit

When this brings up the editor, the file into which we are to write a
commit log message looks like this:

# Please enter the commit message for your changes. Lines starting
# with ’#’ will be ignored, and an empty message aborts the commit.
# On branch sidebr
# Changes to be committed:
# modified: README
#
# Untracked files:
# koala.txt
#

This is essentially just the same git status output we saw earlier,
except this time README is included in what is to be committed.

As the instructions say, we can simply exit the editor without
making a commit at all. Then we can git add koala.txt and restart
the editor. Let’s make another mistake and put something in the file,
though, so that we get a commit. While we’re at it, let’s come up with
a better commit message.

Before we go on, let’s see this same process with Mercurial, i.e.,
forgetting to add koala.txt and simply running hg commit . When
this brings up the editor, the file looks like this:

HG: Enter commit message. Lines beginning with ’HG:’ are removed.
HG: Leave message empty to abort commit.
HG: --
HG: user: Chris Torek <chris.torek@example.com>
HG: branch ’sidebr’
HG: changed README

The forgotten file is not listed this time, so it’s easy to miss. If you do
catch it, Git and Mercurial use the same technique where an empty
message stops the commit from happening. For now, though, we’re
going to try to write a good commit message, and go ahead and do
the wrong commit.

A good commit message

To some extent, what makes a commit log message good or bad is a
value judgement that cannot be reduced to simple rules. Nonethe-
less, if we consider the context in which commit messages will be



106 distributed version control with git and mercurial

viewed later, a number of simple options become clear. Both Git and
Mercurial offer both one-line and verbose (multi-line) views of log
messages,18 and both also have ways to search through commit log 18 As we noted earlier, in Mercurial, the

one-line message requires writing a
template.

messages for particular strings and patterns. You or one of your col-
laborators will view these messages later, with an eye toward finding
where a bug crept in or was fixed, whether a feature is finished yet,
or quite often, what the purpose of some particular change was.

* 80a7ae7 switch cli env to quoting package
| * 858277f (obeylines-exp) experiment with \obeylines
|/

* 0c4101d add cli environment, use in "about"

Figure 6.1: Fragment of git log

--oneline --decorate --all output.

Many viewers will try to present you with an abbreviated commit
ID, some graphical drawings connecting parent and child commit
nodes with lines, possibly some branch and/or tag names and so
on, and one line—the subject line—taken from the commit message,
as shown in Figure 6.1. This means that the first line of a log mes-
sage should be short and punchy, based on an action. A good rule of
thumb is that it completes the sentence: If you accept this change, it will
. . . . A commit to roo.txt might therefore begin with chase out a wal-
laby. This might be prefixed with a subsystem or file name (although
file names are easy to extract from commits).

This short, punchy, action-oriented verb the object style subject line
should be followed by a blank line. This is how Git and Mercurial
know where the one-line message stops (Mercurial will just stop after
the first log message line anyway, but Git will keep assembling more
text until it comes across a blank line). Below the blank line, write
as much additional text as you need to remind the future version
of yourself, or explain to your collaborators, what you were think-
ing when you made whatever changes you were working on. I also
recommend keeping these lines not too long (maybe up to 70 or so
characters, as they will get indented by various commands), and
using a blank line between paragraphs.

In this particular case, the commit message I used is:

add prototype koala file

Prepare for working on koalas in side branch.
While we’re at it, update the README.

which actually highlights a bit of bad practice: the “while we’re at it”
part. A good commit message describes a single action, and “update
the README” is an action that seems (and in fact is) unrelated to
any koala preparation. Commits themselves should also only do one
thing, as much as possible anyway, since we can, in the future, look



getting started 107

at these changes in isolation (to see if bugs, or perhaps wallabies,
got in) or actually back them out (if necessary). It’s not so good if
backing out a bug also backs out some unrelated wording or spelling
fix in some documentation. Ultimately, this is still a good commit
message; it’s just describing a bad commit.19 If what we changed in 19 Ironically, our “mistake”—failing to

add koala.txt—would actually make
it easy to make two commits now, one
just for the README and then one just
for the new file. That would actually be
a better idea, but forgot to add a file is a
very common mistake so let’s run with
this example anyway.

the README file had been properly koala-related, this would be a good
commit. Still, let’s write it out and exit the editor, so that the VCS
adds our third commit.

Fixing an incorrect commit

In any case, this commit has a bigger mistake: we forgot to add the
koala.txt file. Let’s see how to fix this, which is easy enough in
both Git and Mercurial, since it’s just one commit. It’s important to
note, though, that we have not published this commit. No one else has it,
which is what allows us to fix it.20 20 Incidentally, this is why allowing

colleages to fetch or pull at any time,
without warning, from your private
repository is generally a bad idea. You
don’t want them to get commits that
are not yet ready. Mercurial’s commit
phases help here—we will describe these
later—but it is generally just not a good
plan.

Git: fixing an incorrect commit

In Git, to fix a previous commit, we use git commit --amend. This re-
does the commit, allowing us to edit the commit log message. Before
we amend the commit, though, we want to stage (i.e., add) koala.txt
this time. (If we forget again, we can just keep doing the amend.)
Hence:

git add koala.txt
git commit --amend

We don’t have to re-stage README here, since it’s already staged from
earlier.21 You can think of this as arranging the furniture and props 21 If you’re not sure what’s staged, just

run git status. Still, it won’t hurt to
re-stage it, either.

on the kind of stage used in a play, and then taking a snapshot: the
picture saves the staged arrangement, but it’s still staged.

If we did need to fix something in README, we could edit the file in
the work-tree, re-stage it with git add README, and do another git
commit --amend. You can run as many amends as you like, one after
the other. Each just hides away the previous commit while leaving
the stage alone, then makes a new commit snapshot that takes the
place of the earlier one.

Mercurial: fixing an incorrect commit

In Mercurial, to fix a commit, we could first explicitly roll back the one
we just made, using the command hg rollback:

repository tip rolled back to revision 1 (undo commit)
working directory now based on revision 0



108 distributed version control with git and mercurial

Now we can hg add koala.c and run hg commit again. Unfortu-
nately, this does not save the original commit message, so we would
have to type it in all over again. Mercurial therefore acquired a
commit --amend option in version 2.2. This effectively combines
the rollback-and-recommit in much the same way as Git’s commit

--amend (though under the hood, there’s no more need for the roll-
back step, which actually makes it more useful).22 22 Furthermore, the use of hg rollback

is discouraged in Mercurial since
version 2.2. This is because rollback
is implemented at the wrong level:
it undoes the last internal database
transaction, not necessarily the last
commit.

Instead of the three step rollback, add, re-commit, you can and
should use the simpler sequence:

hg add koala.c
hg commit --amend

which works identically to the method in Git.

Both: fixing an incorrect commit

The one good thing about Mercurial’s old (pre-version-2.2) method
for fixing a commit is that it makes it clear how this actually works.
Remember that we saw in Chapter 4 that the GUID of a commit de-
pends on every part of its contents. This means that it is literally
impossible to change a commit. All we can do—which is thus pre-
cisely what we do do—is to make a new commit, with new contents
and new log message, whose parent commit is the same as the orig-
inal parent. There is a significant difference between the two VCS’s
implementations here, though. When using hg commit --amend, you
will see a message like this:

saved backup bundle to ... c9974a6107c4-e05b2a02-amend-backup.hg

This “backup bundle” holds a copy of the commit that has been
removed from the repository. (The path name of the backup is in the
repository directory, but these are at least logically separate; they
have to be unbundled to turn them back into commits.) Mercurial
must remove this commit because otherwise it would present itself
as a new head within the branch. Git leaves the old commit behind
in the repository, while simply modifying the branch name to point
to the new commit. In other words, Git leaves the original commit in
the commit DAG, which means you can get to it again as long as you
do so before it expires. Admittedly, if you want the original commit
back, finding it can be a bit tricky, somewhat analagous to searching
through the backup bundles Mercurial saves, but there is no need
to transform (“unbundle”) them: all the usual Git operations work
normally on these commits.



getting started 109

How HEAD works and branches grow in Git

Branch growth in Mercurial is easy: hg commit just makes a new
commit on the current branch, setting the new commit’s parent ID to Exercise 6.1: When is a new commit the

only head, and when is another head?the current commit ID, and then setting the current commit ID to the
newly-made commit. The new commit is automatically a Mercurial
head within the branch since it has no commits pointing to it yet.
If it is the only head, everything is very simple, but even if not, the
process is simple and we can deal with the multiple heads later. In
Git, though, a commit may be on many branches, or even no branch.
How can this actually work?

We noted earlier that in Git, the name HEAD always identifies the
current commit. We also just saw that checking out a commit by ID,
or by relative name like HEAD^, “detaches” HEAD as if we were some
ghoul chasing Ichabod Crane. Creating or getting back on a branch
using git checkout somehow re-attaches our HEAD. What’s actually
going on here?

As we noted in Chapter 5, Git’s HEAD normally contains the name
of a branch—or slightly more precisely, the name of a branch name. Git
calls this a symbolic reference.23 When HEAD has another branch name 23 You might wonder if Git allows other

names to be symbolic references. It
does; but they are not actually very
useful. Git decides when to follow a
symbolic reference through its target
(vs using it symbolically) mainly by
hard-coding the correct special-case
action only for HEAD.

inside it, Git says that we are on that branch. This affects the way git

commit makes new commits.
Remember that we say that a branch name like master “points to”

the tip commit of branch master. This means that Git’s branch-table
entry for master contains the raw hash ID of that commit.24 To make

24 More precisely, the
refs/heads/master entry has the
ID. This entry may be in a packed refs
file or in its own separate file. Git’s ab-
stractions for working with these have
improved greatly since the old days,
and programmers should no longer
peek directly at these files.

a new commit, the git commit command reads HEAD, sees that it says
master, reads master, and finds the current commit ID. It then writes
that commit ID into the new commit as its parent-commit ID. Once
the new commit is safely ensconced in the repository, git commit

writes the new commit’s ID back into the entry for master. HEAD still
points to (i.e., names) master, but master now points to the new
commit. The new commit points back to the previous tip of master,
and we have successfully added a commit to master, as in Figure 6.2.
The old, now-overwritten commit hash that was stored in master

is represented by the dashed grey line; the new hash, in solid blue,
points to the new (solid blue) commit.

· · · master

Figure 6.2: Adding new (blue) commit.To detach HEAD, Git simply writes an actual hash ID into it, in-
stead of the name of a branch. Now git commit reads HEAD and,
since that resolves to the hash ID, stops there. It then makes the
new commit as before but writes the new ID directly into HEAD. The
anonymous branch therefore grows as we make new commits. Using
git checkout -b newbranch to create a new branch name copies the
hash ID from the detached HEAD to the new branch name entry, then
writes the branch name into HEAD. (If this whole paragraph make no



110 distributed version control with git and mercurial

sense to you, don’t worry! We’ll come back to it later.)

Cloning existing projects

Starting with an existing project is in one sense easier than creating a
new project: you get a whole bunch of commits you can look at and
play with, without having to write them yourself. In fact, we did this
in Chapter 5, and it took just one command.

There is, however, a great deal going on with all of this. Cloning
immediately exposes you to some major differences between Git and
Mercurial. The Mercurial startup process is quite straightforward, but
the Git startup process is not. It is easy to do, and it seems simple, but
without proper preparation, you may soon go far astray and end up
deleting the project and downloading a fresh copy.

Moreover, once you choose to send your commits back, or store
them on a cloud server such as GitHub or KilnHg, you will need
to authenticate: to prove to the server that you are who you claim to
be. We’ll touch lightly on the issue of authentication here, though
the details depend too much on both the server and your own OS to
show everything.

The first step is the same for both VCSes; you will clone the exist-
ing project from some URL:

git clone url
hg clone url

The general form of a URL should be familar to anyone who has
used a browser: http://host.dom.ain/path/to/thing. The first
part of this URL (“http”) is called a scheme. Both Git and Mercurial
have four built-in schemes: a local “file” path, an “http” or “https”
web site, or an “ssh” host and path. Using an absolute path without
a file scheme will direct both VCSes to a local file as well.25 Git 25 Both VCSes support Unix-style paths

with leading slashes. Windows-style
paths using backslashes can be trickier,
and Windows drive-letters look like
scheme prefixes. Some versions of Git-
for-Windows handle these better than
others.

supports one more scheme than Mercurial, using “git”.26

26 Git actually has five more: ftp,
ftps, and rsync, and also git+ssh

and ssh+git. The last two are just
alternative syntaxes for the ssh scheme.
The other three are deprecated and may
be removed without notice.

In general, these URLs use a double slash followed by an optional
user name (and even an optional password27), then the host name, an

27 Showing passwords in cleartext is a
bad idea; this will not be done here.

optional port, and then a path with slashes:

scheme://host/path/to/repository
scheme://user@host/path/to/repository
scheme://user@host:port/path...

These work with both https and ssh. Git’s git: scheme does not
take a user name and does no authentication, but does allow a non-
standard port, as in git://host:port/path....

The scheme you choose selects how the client will talk to the
server, specifically, a protocol and transport layer by which client and
server can converse. In general, I recommend using ssh or https



getting started 111

if possible, as once it they are set up, they provide a well-secured,
well-authenticated transport layer.28 For ssh, you generate a secure 28 Https uses SSL/TLS, while ssh—

which stands for Secure SHell—is
similar but has its own protocol. SSL
stands for Secure Socket Layer, and
TLS for Transport Layer Security.
SSL/TLS set-up is especially complex
on the server, which must do a lot of
certificate authentication. As a user
simply downloading files, few of these
setup issues affect you.

key once on your client, and then install it on the server, in some
server-specific manner. With https, you must supply a user name
and password somehow; the SSL/TLS session encrypts these when
sending them to the server so that only the server can decrypt them.

If you must provide a password frequently, you will want some
sort of credential helper program, and/or an agent. Git includes sev-
eral built in credential helpers for https authentication, but you will
probably want a system-specific one such as OS X Keychain. If your
ssh keys are protected by a passphrase, either OS X Keychain or ssh’s
ssh-agent command can authorize programs to access the keys.
Since these details are OS-dependent, they are largely outside the
scope of this book.

Once you get past the transport layer, neither Git nor Mercurial
have any built-in verification that users are who they claim to be (the
name and email-address settings are simply passed on through).
If you are simply cloning a public repository, of course, any of the
non-authenticated methods are fine as well.

Both Git and Mercurial will perform the clone as directed, copy-
ing the remote’s repository to a new local repository whose name
is the same as the final path component. For instance, if you clone
git://github.com/git or http://github.com/git you get the source
code to Git in a directory named ./git; if you clone
http://www.mercurial-scm.org/hg you get the source code to
Mercurial in a directory named ./hg. With both Git and Mercurial,
cloning also saves the original URL in the new clone’s configura-
tion file. However, since they use different methods for distributing
branches, the Git clone will have only one local branch, while the
Mercurial clone will have all branches. As we just mentioned, the
Mercurial setup is much simpler: at this point you are ready to go.
Git’s is not, so let’s examine it closely.

Git: cloning existing projects

Remember that in Chapter 4, we noted that Git uses a remote name
to qualify remote-tracking names. When you clone any repository,
the name of the remote is origin.29 This is meant to show that ev- 29 You can change this at clone time, or

at any time later, if you like.erything so recorded came from the “origin-al” repository you just
cloned. If you intend to send changes back, some people (and some
parts of Git’s own documentation, for that matter) prefer to call this
the upstream, so you will see both of these names at times.30 In any 30 There is also a more complicated

setup you can use where you will have
both an origin and an upstream, but we
will leave that for later.

case, the Git clone will copy all of the remote’s branches—by this we
mean the ordinary branch names as they appear on the remote—into



112 distributed version control with git and mercurial

your remote-tracking names, such as origin/master.
As soon as the clone is ready to use, though, Git creates one local

branch name for you. Usually this is named master (but we’ll see a
different branch name used in just a moment). Since each Git branch
name points to that branch’s tip commit, the question you should
ask yourself here is this: How does Git decide which commit your newly-
created local branch is to set as its tip? The answer to this question is
both surprisingly simple and surprisingly complicated, and lies at
the heart of the first stumbling block for many Git users: it’s the same
commit as that of a remote-tracking name.

The last step that git clone runs is git checkout branchname,
such as git checkout master.31 Normally this command means 31 We will see later when and how Git

chooses the name master.switch me to that branch, but the branch does not exist yet. What
checkout does here is to see if there is one (and only one) remote-
tracking name whose de-qualified name matches the name you
asked for. In this case, since you just cloned everything, you have Exercise 6.2: Obviously there could

be none, e.g., if you ask to check out
numbat when there is no branch for
numbats yet. How could there be more
than one?

every remote-tracking name with the origin/ prefix, and thus there
is exactly one such match, which is origin/master. The checkout

command then creates this as a local branch, pointing to the same
commit—the tip commit of the remote-tracking name—and as a
bonus side-effect, marks this new local branch as tracking the remote-
tracking name (the blue arrow in Figure 6.3).

master

origin/master

Figure 6.3: Git: create master via
origin/master.

If you are perhaps a bit dizzy at this point with all the re-use of
the words “tracking,” “local,” “remote,” and “branch,” rest assured
that this is quite reasonable. You have a “local branch” that is said
to be “tracking” a “remote-tracking branch”—or as I prefer to call it,
a “remote-tracking name.”32 The local branch is not always called 32 If you use the phrase remote-tracking

branch name, you will need the phrase
local branch name to tell the two apart.

a tracking branch even though it is tracking something,33 and the

33 This varies from one group to an-
other. It seems quite reasonable to call
these “tracking branches,” and some
people do, while others reserve the
word “tracking” for remote-tracking
names.

“remote-tracking name” is really a locally-stored and automatically-
updated name, remembering where their master was the last time
your Git talked with origin’s Git. Personally, I find this terminology
awkward and cumbersome. It grew into this mess through historical
usage, starting from very old versions of Git that lacked the entire
concept of remotes. Nonetheless, it is the modern Git terminology
and we must use it to talk with other Git users.

In summary, then:

• A remote-tracking name like origin/master is a locally-stored name
that is qualified at the front with the name of a remote like origin.
It is automatically updated on fetch and push (with some minor
annoying details left for later) when your Git synchronizes with
the remote origin. A remote-tracking name therefore remembers
where their branch-tip was the last time we talked with that remote.

• A local branch like master is a locally-stored name that is not qual-



getting started 113

ified at the front. It may or may not track another branch name. If
it does track another branch, it can track either a remote-tracking
name or another local branch. We will show later what this Git-
specific concept is about, i.e., what it means for one branch-name
to track another branch-name.

• When asked to check out a branch by name, but no branch by
that name exists yet, git checkout can create a new branch that
points to the same tip commit as some remote-tracking name. It
will do this whenever there is exactly one remote-tracking name
that matches the name, such as master vs origin/master.

• The branch name that the initial clone checks out, usually master,
is actually whatever the remote recommends. You can override
this recommendation using git clone --branch branch, but (at
least for now) there is never any need.

This is how Git manages to get you on a local master (or other
branch) immediately upon cloning a repository. Note that every-
thing is local, even if its name has the word “remote” in it. Only a
few commands—chiefly fetch and push, and of course the original
clone34—try to call up the remote. This is what everything is local 34 This is not meant to be a full list, but

most of the other commands you will
use work entirely locally.

means: you do all your work on your local machine, in your local
repository, until you explicitly synchronize.

Mercurial: cloning existing projects

Mercurial’s clone process is far simpler than Git’s, since it sim-
ply clones the entire repository, automatically including all the
branches, and then updates to the highest-numbered commit in
branch default.35 Note that the highest sequential number is au- 35 As with Git, there is a way for the

server to recommend a particular
commit, maybe not even on default,
and you can override this at clone time.

tomatically the most recent commit in both the original repository
and your new clone, but only because your clone is currently identical
to the original, and commits are added sequentially. Once you start
adding your own commits, and the owner of the original repository
continues adding commits there, your local revision numbers will
stop matching up.

In other words, if you have just cloned Alice’s repository and it
has over 7400 commits, you can ask her about the Tasmanian devils
in commit #7351, and she’ll have the same -r7351 that you do. How-
ever, a few months from now when you both have more than 7900

commits, your -r7822 and her -r7822 may be different. All the ear-
lier commits are the same, so the initial clone can just go by number,
but after a while your two repositories will have a different history of
commits and only some local numbers will match up.



114 distributed version control with git and mercurial

Cloning our three-commit repository

Let’s see how all this works in practice by cloning the Git or Mer-
curial repository we made in the first part of this chapter. If you
like, you can do this across a network using multiple machines, but
this example will just use local files, so that we need not set up any
servers.

We could start this way:

cd ../ move up to dir containing project
mkdir project-copy make a directory for the clone
cd project-copy enter that directory
git clone ../project or hg clone ../project
cd project enter the clone

The clone would made a sub-sub-directory named project, so we
would wind up with project-copy/project, which seems a bit re-
dundant. Instead, we can direct the clone sub-command to make the Exercise 6.3: (Optional) Try doing

this the long way here, just to see it in
action.

clone in a directory name of our choice:

cd ../
git clone project project-copy or
hg clone project project-copy
cd project-copy

These print some reassuring messages and should then succeed. Git
will tell you that it is done; Mercurial will tell you that it has done a
update. Now let’s use branch to inspect the clones.

Git: cloning our three-commit repository

For Git, we begin with:

git branch

The output is:

* sidebr

This is sidebr, not master!
We noted just a moment ago that the branch clone checks out

(and therefore creates based on a remote branch) is suggested by the
remote. So, let’s see what remote-tracking name we have, using:

git branch -r

The -r option tells branch to show the remote-tracking names. We
might expect to see two renamed items here, derived from the origi-
nal master and sidebr, but in fact, we get three lines of output:



getting started 115

origin/HEAD -> origin/sidebr
origin/master
origin/sidebr

Here we have the two remote-tracking names we expected, but first
we have this funny looking origin/HEAD and an arrow pointing to
origin/sidebr. This shows us that the other repository’s current
branch is their sidebr. This is how they—we, really, since the origin
repository is our own—are recommending that the clone use sidebr

for its initial checkout: The branch that is current in the origin repository
determines which branch clone checks out.

What this means in practice is that after cloning a repository, you
should check which branches you and they have, and decide whether
you want to be on whichever branch you are on now. This is even
more important with older (pre-1.8.5) versions of Git, as they have
to play a bit of a guessing game. Remember that HEAD is normally
a symbolic reference, containing the name of another branch-name.
That is, HEAD is a sort of arrow pointing to another branch name like
sidebr. This is exactly what we just saw with git branch -r. Since
Git version 1.8.5, the remote Git simply tells the cloning Git that HEAD
points to sidebr. Before that, the remote Git told the cloning Git only
that HEAD resolved to some specific hash. The cloning Git would look
through all the incoming branches and pick one that had the same
hash.

This is all of relatively minor importance, but if you understood all
of the previous paragraph, you now know precisely how HEAD works.
If not, try reading through this again, remembering that:

1. If HEAD is a symbolic reference, it contains some other branch
name. Otherwise it contains a raw hash ID.

2. Any other branch name contains a raw hash ID.

3. Upon request, Git will turn any branch name into a hash ID.

4. Therefore, depending on the kind of request, Git can turn HEAD into
either another branch name or a hash ID.

Git commands that want to know What branch are we on? get the name
out of HEAD, while most commands that only want to know What is
the current commit GUID? get the ID from HEAD, following through
it to read the branch tip ID from the current branch as needed. The
one very special command, git checkout, that can put us on a branch
or change branches writes the new branch name into HEAD, and git

clone ends by doing git checkout with the branch name from the
remote.36

36 Or, in Git version 1.8.4 and older,
Git uses your clone command’s best
guess. This applies if either Git—local
or remote—is older. Of course, if you
supply a name with -b, git clone just
uses that name.



116 distributed version control with git and mercurial

Mercurial: cloning our three-commit repository

Unsurprisingly, Mercurial is once again far simpler than Git. We
begin with hg branch , which simply prints:

default

The hg branches command is a bit more interesting:

sidebr 2:4db4302bab15
default 1:cd3c000e60f5

To really find out where we are, though, we need hg summary :

parent: 1:cd3c000e60f5
add prototype kanga.c

branch: default
commit: (clean)
update: (current)

The only real evidence that we were just working in branch sidebr is
that the current commit, sequence number 1 and hash cd3c000e60f5,
is not the highest numbered commit.

Does this really matter? Perhaps not, but Mercurial’s authors did
eventually add a way to let the source repository tell the clone which
revision to choose. If we go back to our original repository and create
a bookmark named @ pointing to its current commit—which, as with
the Git repository, is the one at the tip of sidebr (in Mercurial, it’s the
only commit on that branch)—and redo the clone, we’ll wind up on
sidebr:

cd ..; rm -rf project-copy
cd project; hg bookmark -r . @
cd ..; hg clone project project-copy

This time the clone command says:37

37 Just as with Git, we can override
the final update with a command-
line argument, -u or --updaterev.
We can even suppress it entirely with
--noupdate.

updating to bookmark @ on branch sidebr
2 files updated, 0 files merged, 0 files removed, 0 files unresolved

and sure enough, cd project-copy; hg branch now prints sidebr.

Both: cloning our three-commit repository

If you are maintaining a Mercurial repository where new users
should land on a different branch by default, it is up to you to set
this @ bookmark. As we just saw, the process can be automatic with
Git since it uses the source repository’s HEAD, which is also the source
repository’s current branch. In practice, it isn’t automatic,38 but we

38 It’s usually a good idea in Git to use
a special bare clone as the URL target
for push and fetch operations. Git users
must manually set HEAD in a bare clone.will cover this later.



7
Working tree states: commits vs work-tree

In Chapter 3, we saw how using the checkout verb, which changes
the current commit, replaced the contents of our work-tree with that
from the specific commit we are checking out. In other words, if
the current commit was a234567 but is now bcdef01, the work-tree
contents go from those for a234567 (the then-current commit) to
those for bcdef01 (the now-current commit).

If we never did any work in the work-tree, this sort of behavior
would be all there was to know. But we need to know precisely what
happens when we do do something in the work-tree. We already did
some work in Chapter 6, and we had to use git add more often in
Git than we had to use hg add in Mercurial.

We also noted all the way back in Chapter 1 that there are files that
we usually should not submit to the version control system. Some of
these files will live in our work-trees.

By the end of this chapter, you will understand the role of the
work-tree—and Git’s index—in making new commits, and how to
tell the VCS to ignore files it should not version. We will start by
reviewing some facts about commits. Next, we will look at what hap-
pens as we modify the work tree, how Git’s index stands in our way
as we do this,1 and how this all combines to eventually make a com- 1 This index barrier has both positive

and negative effects, as we will see.mit. Afterward, we’ll look at what happens when we ask to check out
a different commit without first committing pending changes.

Commits are forever . . . until removed

Commits are mostly-permanent, and definitely-unchanging. As we
saw in Chapter 4, the hash ID of any commit is—must be—unique
across all repositories that have the commit now, or ever will have the
commit in the future. This means that once a commit is created, it
can never be changed. It can, however, be removed, as long as nothing
and no one else depends on it. That is, it must be a Mercurial-style
head, with no descendant commits.2

2 To remove an ancestor commit, we
can first remove all of its descendants,
so that it is this kind of head, then
remove the commit itself. This is what
Mercurial’s strip command does.



118 distributed version control with git and mercurial

We just saw that both Git and Mercurial provide an “amend”
modifier we can use when committing. Amending a commit really
means discarding the original commit, and switching to a new commit
instead. In general, we only want to do this with unpublished com-
mits. Mercurial enforces this for you automatically, though Git does
not.

Suppose Alice publishes a commit to Bob, then “amends” the
commit. In reality, she makes a new commit, and she stops using the
original. This unwanted original goes away on its own: in Git, this
happens eventually, and in Mercurial, it happens immediately. We
will see the details about this process later. But the next time Alice
brings commits back from Bob, she will probably bring her own old
unwanted commit back: her VCS will think Bob supplied it as new-
and-in-use! The precise details vary between the two VCSes, but the
effect is the same.

In other words, commits can be removed—from the commit DAG
and from the repository—if and only if no one else has and depends
on them. If Alice really needs to remove the commit, but Bob also has
it, Alice will have to get Bob to remove the commit from his reposi-
tory as well. If Bob has built new commits atop Alice’s, this makes a
lot of work for him.

(It’s more difficult for anyone—Alice or Bob, in this case—to
“amend” a commit that is not the most recent one. Such a commit
has descendants in the commit DAG, and those descendant commits
depend on the the original. For instance, if there are three commits
in a row that lead to the tip or head of her branch, and Alice wants
to “amend” the third one back, she must copy the two descendant
commits to new commits that now depend on the new “amended”
commit. This same idea allows Bob to retain with his own work: if
Alice must retract a published commit that Bob now depends upon,
Bob can copy his existing commmits to a new set of commits, avoid-
ing the commit Alice wishes to retract. It’s best to avoid this entirely,
but we will see some practical examples of it much later.)

In any case, we usually do not remove commits, but only add new
ones. Mercurial used to be quite fussy about this, with Git being
much more relaxed.3 When we are only adding new commits, each 3 This is in part because Git can secretly

retain the commits, just putting them
onto no branch. This allows you to
restore or copy them later, as long
as you do it before they expire. This
course of action is not available to
Mercurial.

existing commit is permanent, frozen forever in time. Both VCSes
encourage us to think of commits this way, and to behave this way as
well—except, that is, with just-made, definitely unpublished, amend-
able commits.



working tree states: commits vs work-tree 119

Working trees are not permanent and can be clean or dirty

While commits cannot change, work-trees can and must. If we are to
do anything new in our repository, we must work in our work-tree.
This means that the files in the work-tree become different from those
in the current commit.

If we have not changed anything in the work-tree, the VCS calls
it clean. We can switch commits freely. Any files that need to be re-
moved entirely can be safely removed, because they’re safely saved
in a commit. Any files whose contents must change can be safely
changed, because those contents are safe in a commit. In other words,
as long as the work-tree is clean, we can always switch commits.4 4 This is an overstatement, because we

can have untracked and/or ignored files,
as we will see.

If we have modified some files, though, the work-tree is dirty. If
we then direct our VCS to switch commits, what happens to our
changed files? Git and Mercurial have somewhat different answers,
but both systems try to carry the changes with them. For the mo-
ment, let’s set that last idea aside. The text below mentions sleepy koalas:

they generally sleep for 18 to 22 hours a
day. This is because the koala’s primary
food source—eucalyptus leaves—is both
a poor source of nutrients, and rather
toxic. Eating more food would obtain
more calories for more activity, but
poison the animal. The koala’s solution
to this dilemma is to expend as little
energy as possible.

Mercurial: the work tree is like a changeable commit

We saw earlier that the first line of hg summary said that the parent
was the current commit. Let’s work with our side branch, in which
we have created koala.txt. Here is what Mercurial has to say about
it:

$ hg id
db6f6e1d8715 (sidebr) tip
$ hg summary
parent: 2:db6f6e1d8715 tip
add prototype koala file

branch: sidebr
commit: (clean)
update: (current)
phases: 3 draft

Let’s modify koala.txt to add a second line:

$ echo they also sleep a great deal >> koala.txt
$ hg id
db6f6e1d8715+ (sidebr) tip
$ hg summary
parent: 2:db6f6e1d8715 tip
add prototype koala file

branch: sidebr
commit: 1 modified
update: (current)
phases: 3 draft

Note that the hg id output now shows a plus sign, marking the
work-tree as dirty, and the hg summary output now says 1 modified.



120 distributed version control with git and mercurial

What’s going on here is that Mercurial treats the work-tree as a
proposed commit, a sort of as-yet-uncommitted commit. Since this
proposed or prospective commit is not yet actually committed, we
can change it all we want. But since it is like a commit, its parent is
the actual current commit. This is why hg summary calls the current
commit the “parent” of the work-tree state.

If we were to make a new commit right now, it would have one
modified file mentioning sleepy koalas. If we modify the README file,
hg summary will say 2 modified. If we instead create a new file and
fail to hg add it, hg summary will say 1 modified, 1 unknown; and
if we do hg add it, hg summary will say 1 modified, 1 added. Note
that at any point, hg status will show us the status of each of these
(added, modified, or unknown) files.

It is worth mentioning here that if we are in the middle of a merge,
hg summary will list both parents of the prospective merge commit.
The current commit is always listed first. The second parent’s ID is
saved in a hidden data structure called the dirstate. We will come
back to this later, when we cover the process of making merge com-
mits and resolving merge conflicts, but the nice thing about this
dirstate is that we can basically ignore it: Mercurial brings it up only
when necessary.

Mercurial’s hg status will list each modified file with a single
uppercase M—modified—in front. There is only the one file, so this
is not very interesting now, but let’s go ahead and run it anyway.
Then we should commit the sleepy koala:

$ hg status
M koala.txt
$ hg commit -m ’mark koalas lazy’
$ hg summary
parent: 3:ada3df2947f7 tip
mark koalas lazy

branch: sidebr
commit: (clean)
update: (current)
phases: 4 draft

The current commit is now 3 and the work-tree is clean. Note that
the work-tree is proposed commit 4, and we now have a clue re-
garding the last line of the summary: proposed commit 4 is in draft
phase. This means it is not yet published—which is trivially true: the
modifiable work-tree state cannot be published. There are now four
commits in the repository, numbered zero through three. Number
three is the tip commit, and this is what the word tip is doing at the
end of the parent line. (Don’t confuse Mercurial’s tip—or highest
numbered—commit with Git’s tip commits, which are those pointed-
to by a branch name.)



working tree states: commits vs work-tree 121

Git’s index

We have mentioned several times that Git imposes an extra, inter-
mediate, prominent yet semi-hidden data structure that Git calls
the index, cache, or staging area. This index lives between the current
or HEAD commit and the work-tree: see Table 7.1. You can copy files
from the HEAD commit to the index, from the index to the work-tree,
or from the work-tree to the index. Mercurial gets away without an
index at all,5 proving that the index is not necessary. Nonetheless, Git 5 Mercurial does have two data struc-

tures that it keeps much better hidden:
the manifest, which as we already men-
tioned keeps a list of all files, and its
dirstate, which we can largely ignore.
Neither of these is quite like Git’s index:
in particular, they never get in our way.

While Git’s index gets in our way
all the time, it also provides several
features, and is a key component of
how and why Git is so fast, compared
to similar VCSes.

uses its index to help it keep track of changes made in the work-tree,
and—as we will see in a moment—to help it ignore files that should
not be versioned. Git also uses the index to address a third issue we
will learn more about when we cover merging in greater detail. We
will now see some of the things the index does for us that Mercu-
rial cannot do. You can decide for yourself whether these features
are worth the learning cost of Git’s index. Unfortunately, even if you
choose not to use these features, Git forces you to learn about them.

writable?
file HEAD index w.tree

README 7 3 3

koala.txt 7 3 3

Table 7.1: The index.

Git: the index contains the proposed commit

Let’s make the same change in Git we did in Mercurial, observing the
difference in git status output:

$ echo they also sleep a great deal >> koala.txt
$ git status --short
M koala.txt

$ git add koala.txt
$ git status --short
M koala.txt

This time, the letter M moved (and changed color, from red to green, if
you have color enabled). If we used the longer form of git status,
we would see that koala.txt went from Changes not staged for

commit to Changes to be committed. This is because the add com-
mand copies the file, from the work-tree into the index. In Git, it’s the
index, not the work-tree, that is the proposed new commit.

This means, however, that when we work in the work-tree, we
are not working on the files that will be committed. There is a hidden,
second set of to-be-committed files. If there are two copies of each file,
there must be two file statuses, and that is in fact the case. Without
committing, let’s change koala.txt again, so that it is different from
both the current commit (which has one line) and the copy in the
index (which has two lines):

$ echo third line, not to be committed >> koala.txt
$ git status --short
MM koala.txt



122 distributed version control with git and mercurial

We now have three different versions of one single file koala.txt all
active at the same time. The one line version is in the current commit,
the two line version is in the index, and the three line version is in the
work-tree. The status command runs two comparisons, and prints
the two M letters. The first M says that the current, or HEAD, commit Exercise 7.1: Use the longer form of git

status now. Does it tell us that there
are changes to be committed? Does it
tell us that there are changes not staged
for commit?

koala.txt differs from the index koala.txt. The second M says that
the index koala.txt differs from the work-tree koala.txt.

Let’s do one more thing now before we commit: Let’s make the
work-tree version of the file match the current commit version. We can
do this by putting back the original single line. Let’s see what git
status --short says about it, then make the commit:

$ echo koalas look cute and cuddly > koala.txt
$ git status --short
MM koala.txt
$ git commit -m ’mark koalas lazy’
[sidebr 0cbdbdb] mark koalas lazy
1 file changed, 1 insertion(+)

$ git status --short
M koala.txt

Now that we have made the commit, the first M is gone: the HEAD

and index versions of koala.txt match. The second M remains: the
index and work-tree versions of koala.txt do not match. The work-
tree version does match the previous commit, but that does not matter
to git status.

Git’s index is not so easy to see, so use git status

You should ask: How do we know what just got committed, or what will
be committed? The complete answer requires peeking ahead. For Exercise 7.2: How do we know what

will be committed?now, though, note that if the index and work-tree match, you can just
look at the work-tree file. If they don’t, you must either find a way to
look at the index file, or make them match.

If we run the long form of git status, though, Git gives us some
hints, right after it mentions Changes not staged for commit:

$ git status
On branch sidebr
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: koala.txt

no changes added to commit (use "git add" and/or "git commit -a")

We already know that git add copies from the work-tree to the in-
dex. Using git checkout -- koala.txt, however, copies from the



working tree states: commits vs work-tree 123

index to the work-tree. In other words, it is almost the reverse of
add.6 Let’s do that now, and then look at the status again: 6 Note that this form of checkout, where

we give it a path name, overwrites the
work-tree file with the index version
without first asking whether it should
destroy our hard work. Be careful with
this command!

$ git checkout -- koala.txt
$ git status
On branch sidebr
nothing to commit, working tree clean

Making the work-tree file match the index version made the work-
tree clean. The index naturally matches the new HEAD commit we just Exercise 7.3: Try making the index

version different from the HEAD version,
by editing the work-tree version and
using git add. Then, edit the work-tree
version so that it matches the HEAD

version. We already know that this
will show up as short-status MM, or two
separate changes in the long status. But
now, use git add to copy the work-
tree version—which matches the HEAD

version—into the index again. What
will happen to the status?

made, and the only difference between the index and the work-tree
was this one file, so now the index and work-tree match too.

Summary of Git’s index, so far

These, then, are the three things to know about Git’s index at this
point:

The index sits between HEAD and the work-tree. You must copy files from
the work-tree into the index before committing. You can, however,
also copy files from the index to the work-tree. Beware: when you
request this, Git will happily overwrite your work-tree contents.

Each new commit is made from the index, not the work-tree. This is why
you must git add so often. This does, however, let you commit
a file version that is not in your work-tree. This may seem like a
crazy thing to do, but we will see, later, how you can use this to
split a change into several commits.7 7 In Mercurial, splitting a single file

change into several commits requires
copying the file outside the VCS. Thus,
this is one of the things Git can do that
Mercurial cannot. Is this feature worth
the complexity of the index? Maybe, or
maybe not; but there are more.

Since you do have to do this so often, git add provides an
en-masse --all option. Confusingly, this does not add new files
unless they are listed on the command-line as well. The option
essentially makes Git scan the current index contents: for each
file that is in the index now, Git will copy the work-tree version
into the index, updating what will be in the next commit. In Git
version 2.0 and later, this will also notice any such files that you
have removed from the work-tree, and remove them from the index.
In other words, this option makes Git behave somewhat more
like Mercurial—moreso in the older versions of Git, which do
not remove files that have gone missing (we’ll see in a moment
that Mercurial calls such files “missing” and deliberately does not
remove them).

There are a number of subtle traps here though, such as another
difference in behavior in pre-2.0 Git when --all is used without
path names while within a subdirectory of the top level of the
repository.8 I find it wise to use --all sparingly, and to be careful

8 For the curious, the effect of --all
in Git before 2.0 was to scan only the
current directory and subdirectories,
and as already noted, to ignore what
Mercurial calls “missing” files. In 2.0
and later, Git effectively scans the entire
work-tree by scanning the entire index.with git status afterward.



124 distributed version control with git and mercurial

After making a commit, the index and HEAD match. Other parts of Git,
and other documentation, sometimes refer to this state as being
empty. This is wrong, or at least highly misleading. The index is
not empty; it simply matches the current commit.9 9 There are some tricky ways to run git

commit that use a temporary index, so
that in the end, the regular index and
HEAD may not match. Still, the index is
not empty at this point.

There is much more to learn about the index, but this will suffice for
the moment.

New files, removed files, and untracked files

While Mercurial has no index, we can use Git’s index to illustrate
in more detail how new files get added and existing files removed,
and what it means for a file to be untracked, in both VCSes. This is
because, for once, Git’s conceptualization is slightly simpler than
Mercurial’s (once we buy into the idea of an index, anyway). In ad-
dition, Git allows us to create and destroy entire branches with no
penalty (as long as we don’t publish them). This lets us test some
examples, then hide all the evidence of that testing.

Suppose we make a new branch in Git, then add and commit a
file named removed. We then run git rm removed to remove it from
the index and work-tree. Next, we create a file named new and add
it to the index, without creating a new commit. We also create a file
named utfile without adding it anywhere, and remove the README

file without telling Git that we did. Here are the shell commands to
do this:

$ git checkout -b test
Switched to a new branch ’test’
$ echo remove me > removed
$ git add removed && git commit -m "add file to remove"
[test 0fd4240] add file to remove
1 file changed, 1 insertion(+)
create mode 100644 removed

$ git rm removed
rm ’removed’
$ echo new added file > new
$ git add new
$ echo untracked > utfile
$ rm README
$ git status --short
D README

A new
D removed
?? utfile

present?
file HEAD index w.tree

README 3 3 7

koala.txt 3 3 3

new 7 3 3

removed 3 7 7

utfile 7 7 3

Table 7.2: Git file states in the index.

The situation now is as shown in Table 7.2. The status output skips
koala.txt since all three copies exist and are identical; but ev-
erything else has some change to show. Compare the git status

--short output above to the table, and note that where there is a



working tree states: commits vs work-tree 125

difference to show, it shows up in the first column if it is a change
from HEAD to index, and in the second column if it is a change from
index to work-tree. There are new letter codes as well: uppercase
D for deleted and uppercase A for added. Mercurial uses a differ-
ent letter—uppercase R for removed—but otherwise works much
the same here. Meanwhile, the untracked file is perhaps considered
doubly mysterious. Exercise 7.4: There are two states (3,

7) for each file in each of three places
(HEAD, index, and work-tree). This
means there are eight possible states in
all, but Table 7.2 lists only five. What
are the other three and what do they
imply?

Exercise 7.5 (advanced): We already
saw a status reading “MM” when a
file was different between HEAD and
index and then also different between
index and work-tree. There are many
more two-letter combinations. What are
all of them, and what do they mean?
(Consult the documentation. Some
combinations occur only while in a
conflicted merge, which we have not
covered yet. The letter R, for renamed,
is also for something we have not yet
covered.)

The files README, koala.txt, and new are all tracked, because they
are in the index. The README file is missing from the work-tree, so
it shows up as deleted from the work-tree (but not the index). The
file named utfile is untracked because it is not in the index. Note
that removed is in the current commit, and is not in the current work-
tree, so status shows it as deleted in the index. An interesting thing
happens if we put it back into the work-tree (but not the index) now:

$ echo back into work-tree > removed
$ git status --short
D README

A new
D removed
?? removed
?? utfile

The file named removed is now both deleted and untracked, so it gets
listed twice.10 10 The Git authors elected not to use

“D?” as a status, but that would be
another way to show it here.

Let’s clean all this up now before we go on. We immediately en-
counter a problem:

$ git checkout sidebr
error: The following untracked working tree files would be removed by checkout:

removed
Please move or remove them before you switch branches.
Aborting

Git is, this time, trying to be careful not to destroy any of our pre-
cious data. We’ll come back to this case at the end of this chapter, but
for now, there is nothing valuable here, so we can use the otherwise
fairly dangerous --hard option with the git reset command:

$ git reset --hard
HEAD is now at 0fd4240 add file to remove

This tells Git to go back to the committed state, losing all uncomitted
changes in both index and work-tree. The untracked file will remain
untracked, but now we can switch branches, and we can just remove
the untracked file manually whenever we like, and delete the test

branch entirely:



126 distributed version control with git and mercurial

$ git status --short
?? utfile
$ rm utfile
$ git checkout sidebr
Switched to branch ’sidebr’
$ git branch -D test
Deleted branch test (was 0fd4240).

(the uppercase -D option does a forced delete, telling Git to discard
the branch even if that will lose some commits).

Summary: what it means for a file to be tracked or untracked

In both Git and Mercurial, a file is untracked if and only if:

• it is in the current directory, but

• it won’t be in the next commit.

In Git, it is the index that determines what is in the next commit, so it
is the presence of a file in the index that determines whether the file
is tracked. In Mercurial, it is the manifest that determines what is in
the next commit.

As we already saw, Mercurial is like Git in one way: you must ex-
plicitly hg add a file for Mercurial to begin tracking it, by adding the
file’s path name to its manifest. Once a file is listed in the manifest,
it should be in the work-tree, and will be in the next commit. When
we removed the README file in Git, it did not affect the index, so that
was harmless in one way, and confusing in another—the file does not
show up in listings, yet it will be in commits. Fortunately git status

tells us about the issue. If we try this same thing with Mercurial, its
status will also complain:

$ rm README
$ hg status
! README
$ hg revert README

(the revert command in Mercurial gets the file back from the com-
mit, similar to the slightly dangerous variant of git checkout when
used with with a path name). This might seem a little odd—Mercurial’s
philosophy seems to be to use the work-tree as the next commit, so
why doesn’t it automatically remove files from the next commit if we
remove them from the work-tree?11 The answer is that it did do this

11 By the same token, of course, we
could ask why Mercurial does not
automatically add new files. Here,
there is a better excuse: Mercurial can
record a new file as a copy of an existing
file, instead of merely “new”. This
affects the behavior of a later merge
by changing the way that Mercurial
identifies file-sets. We will leave the
details for later, when we consider high-
and low-level merge conflicts.

at one time:

You might wonder why Mercurial requires you to explicitly tell it that
you are deleting a file. Early during the development of Mercurial, it
let you delete a file however you pleased; Mercurial would notice the
absence of the file automatically when you next ran a hg commit, and



working tree states: commits vs work-tree 127

stop tracking the file. In practice, this made it too easy to accidentally
remove a file without noticing.

[O’Sullivan, 2009]. Hence, if a file is listed in the manifest, but is not
in the work-tree, Mercurial calls the file “missing”.

Git’s index vs Mercurial’s state

Both Git’s index and Mercurial’s “the work tree is the next com-
mit” ideas solve the question of read-only commit vs read/write
work-tree. When using Git, you may modify the work-tree at any
time without affecting what is or will be committed. You can then
do an en-masse git add --all, which adds—and even removes, if
necessary—everything you have changed.12 You may then commit it 12 Remember, the exact behavior of

--all is somewhat different in Git
version 2.0 and later than in earlier
versions. In any case Git’s behavior is
further complicated by its index. Still,
the general principle holds here.

all with a simple git commit. This almost makes Git as easy to use as
Mercurial, where you simply modify the work-tree. Mercurial only
needs a separate pre-commit command to add an entirely new file, or
to remove a file entirely. Most of the time, hg commit alone suffices.

The index creates its own set of problems, though. In particular,
its contents cannot be viewed easily,13 and it mainly shows up in 13 There are commands to inspect the

index, and ways to look at the files in it,
but this is nothing like simply looking
at the work-tree.

status output. It does, however, offer the ability to stage changes
a little bit at a time. Mercurial’s approach, of treating the work-tree
as a modifiable proposed commit, is much more straightforward.
You just edit and commit. What you see in your work-tree is what
will be committed. If you want to commit something that is not in
your work-tree, it’s significantly harder: you must copy the files
elsewhere, make the change in the work-tree, commit, and then copy
the files back. The Git and Mercurial authors both consider their
VCS’s behavior here a point in their favor.

Ignored files

With our purely text based Marsupial Maker, we have yet to come
across a file that will live in our work-tree, but should never be com-
mitted. In real projects in most real languages, however, this occurs
all the time. For instance, if we write Python code, Python compiles
it to *.pyc files. If we write C or C++ code, the compilers generally
write both *.o files and the final linked binary. Some editors also
make editor temporaries and/or backup files in the same directory as
the files being edited. OS X Finder creates .DS_store files in directo-
ries it shows as folders. As noted in Chapter 1, it’s probably best not
to commit any of these.

Both Git and Mercurial can be told about ignored files, which
should never be committed. Here, Git once again gets much more
complicated than Mercurial, and once again, the index is at fault.



128 distributed version control with git and mercurial

As we saw, when either Git or Mercurial come across an unknown
work-tree file, they complain about it. Their status commands print
question marks, for instance. Both VCSes also offer a way to add all
new files, or all files within a directory (including sub-directories).
In Mercurial, you can simply run hg add or hg addremove with no
arguments.14 In Git, you run git add --all. To make these work 14 The difference between hg add and

hg addremove is a bit subtle. Obviously,
the latter removes files, just like git

add --all. However, hg addremove also
does rename detection, which we will
describe later.

correctly when you have files that should never be added, you must
inform the VCS. The add all files commands will then add files unless
they are both untracked and ignored.

To do this, we list the files’ names in ignore files. Git’s ignore files
are named .gitignore, and Mercurial’s are named .hgignore. List- Exercise 7.6: Can an ignore file name

itself?ing the filename in one of these ignore files is necessary,15 but it’s not
15 You can get away without it if you
are willing to put up with constant
complaints from your VCS and are
very careful never to add these files by
mistake.

always sufficient. This is due to the notion of untracked files we covered
in the previous section.

Tracked files are never ignored

Almost everyone who uses either Git or Mercurial gets caught by this
problem at some point: If a file is tracked, it is not ignored. Once
a file gets into a commit, the file is automatically tracked. In Git, it’s
in the index (which initially matches each checked-out commit), and
in Mercurial, it’s in the manifest (which likewise initially matches
each checked-out commit). Then, because the file is tracked, it will
not be ignored, even if the VCS is told to ignore it. For some reason, I think this is mainly because the index

is so much harder to see than the
work-tree, and partly because status
information gets missed when large
swaths of files are modified. Nobody
really wants to look through a thousand
lines of status output.

this problem bites Git users much more often than it bites Mercurial
users.

To get a file that is currently tracked to become both untracked
and ignored, you must commit a removal of that file. This can cause
other headaches later, so it is important to try to get this right ini-
tially. Later, we will see some techniques to mitigate the pain of im-
properly committed files. For now, though, just remember that tracked
files are never ignored.

Which files are untracked?

Remember that for a file to be untracked, it must not be in the index
(Git) or the manifest (Mercurial). How can we tell that this is the
case? It’s easiest to tell before we list the file’s name in an ignore file.

With Mercurial, it’s very straightforward: unless hg status says
the file is missing, it’s either tracked, or hg status gripes about it
with a question mark. So if we don’t see an exclamation point or a
question mark, the file must be tracked.

With Git, it’s not quite as straightforward, but git status may say
one of three things:



working tree states: commits vs work-tree 129

• that the file is deleted in the work-tree (equivalent to Mercurial’s
“missing” status), in which case the file is tracked because it is in
the index;

• that the file is deleted from the commit, in which case the file was
tracked, but is no longer; or

• that the file is untracked, in which case we know it is untracked.

Hence, if git status says nothing, the file is tracked; if it says the file
is untracked, the file is untracked; and if it says the file is deleted, we
must be careful to see where it is deleted: if it is deleted from commit
to index, it is becoming untracked, but if it is deleted from index to
work-tree, it is still tracked. Alternatively, we can use git ls-files

--stage to look directly into the index. This is a very useful diagnos-
tic technique and you should remember it for hard cases. However,
git status is much more useful for ordinary everyday work, and is
what you should usually use.

Once an untracked file is listed in the appropriate ignore file,
however, it becomes much more difficult to tell that the file is in fact
untracked: both git status and hg status will say nothing if the file
is either untracked or unmodified. If the file is untracked, it’s being
ignored, and if the file is tracked but unmodified, there is nothing to
say.

Note that in both VCSes, any file’s tracked-vs-untracked state can
change as you move throughout the commit history. Just because
a file is tracked or untracked right now does not mean it will con-
tinue to be tracked or untracked in the future, or will be tracked or
untracked if we check out a past commit.

Making ignored files

Let’s create some untracked files now. We did this earlier when we
created kanga.txt, but this time, instead of using add, we’ll put the
file’s name into an ignore file:

echo koala notes, not to be committed > koala.notes
echo koala.notes > .gitignore

This will ignore only the file koala.notes (though it will ignore any
file whose base name matches, such as subdir/koala.notes). What if
we want to ignore all *.notes files? The answer is that we can use
just that:16 16 Remember to protect the asterisk

from shell globbing, as we mentioned in
Chapter 5, and are about to do here.$ echo ’*.notes’ > .gitignore overwrite

$ echo kangaroo notes > kanga.notes
$ git status -s -s = --short
?? .gitignore



130 distributed version control with git and mercurial

The .gitignore file is still untracked, but we should add and commit
it:

$ git add .gitignore
$ git commit -m ’ignore *.notes’
[sidebr b6c0ebb] ignore *.notes
1 file changed, 1 insertion(+)
create mode 100644 .gitignore

Mercurial uses the same mechanism, but for once, it’s more diffi-
cult than it is in Git:

$ echo koala notes, not to be committed > koala.notes
$ echo kangaroo notes > kanga.notes
$ echo syntax: glob > .hgignore
$ echo ’*.notes’ >> .hgignore
$ hg status
? .hgignore

As with Git, the ignore file is untracked; we should add and commit
it:

$ hg add .hgignore
$ hg commit -m ’ignore *.notes’

There are not one but two lines in our .hgignore file. In partic-
ular, we had to start with a syntax directive. Mercurial defaults to
using regular expressions (REs) in its ignore files. However, glob syn-
tax is far easier to get right. For instance, if you have a .hgignore file
containing only:

x*.o
bin/*

(forgetting the syntax line), Mercurial will, e.g., ignore files named
hello and binnacle, as the first line literally means any number of
“x”s, followed by any character, followed by “o” (hello has zero “x”s fol-
lowed by “l” followed by “o”), and the second means “bin” followed
by zero or more slashes. However, REs are more powerful than shell
style globs.17 In historic versions of Mercurial, REs used to work 17 That is, all shell globs can be con-

verted to REs, and in fact, this is what
Mercurial does internally. On the other
hand, there are REs that cannot be
converted to shell globs.

much faster as well.18 If you understand REs and want to use them,

18 Most of these performance issues are
fixed as of Mercurial version 3.1.

go ahead, but I believe this is one of those rare cases where Mercu-
rial’s default (REs instead of globs) is wrong.

Git has no support at all for REs in its ignore files. Because REs are
more powerful, this is a bit disappointing. There are some performance-
oriented reasons for this, though. We will get into those details later.

Renaming files

We will go into the subtler details of renaming in more depth later,
but we must touch on renaming here, as it does affect work-tree



working tree states: commits vs work-tree 131

states. Internally, Git and Mercurial handle file renaming very differ-
ently. This is because, at a fundamental level, Mercurial identifies files
by attaching an internal identifier (a unique number) when you first
add the file to its manifest. This unique identifier is the file’s identity,
and it follows the file from then on. To rename a file in the work-tree,
you must therefore run hg rename or hg mv or hg move.19 Git offers a 19 These are all the same command,

with multiple names to match both
unix and Windows conventions. Use
whichever one you like.

similar command, git mv, which seems to do the same thing, though
as we will see later, the underlying implemention of file identity is
quite different.

Let’s do this now with our README file, on the side-branch:

$ ls
README kanga.notes koala.notes koala.txt
$ git mv README README.md
$ git status -s
R README -> README.md
$ git commit

enter the commit message here, then write the file and exit
[sidebr 000d8ea] rename README
1 file changed, 0 insertions(+), 0 deletions(-)
rename README => README.md (100%)

or in Mercurial:

$ ls
README kanga.notes koala.notes koala.txt
$ hg mv README README.md
$ hg status
A README.md
R README
$ hg commit

enter the commit message here, then write the file and exit

Git’s status shows the file as code R for renamed, and includes
both the old and new names. Note that the short-status R is in the
first column: git mv renamed the file in both the index and in the
work-tree, so the rename status is HEAD-vs-index (first column) and
not index-vs-work-tree (second column.)20 When we make the next 20 In fact, only the index copy of a file

will ever show up as renamed, because
when git status runs the second git

diff to compare the index to the work-
tree, it disables rename detection. You
can, however, get an “RM” status,
indicating that the index entry was
renamed, and the work-tree copy under
the new name differs from the index
copy.

commit, Git again shows the file as renamed, though this time with a
mysterious percentage. We will see what this percentage means later
(XXX when?).

Mercurial’s status shows README as removed,21 and README.md as

21 Remember, Git uses D for deleted but
Mercurial uses R for removed.

added, rather than showing a simple rename. It’s not clear why—
perhaps just because the Mercurial authors did not want to print
two file names on one file-status line. In any case, Mercurial’s hg mv

renamed the file in both the manifest and the work-tree, retaining
the file’s internal ID number. Since there is no complicated index
in Mercurial, there is only the one change to worry about. If you
actually do this as separate remove and add steps, though, Mercurial



132 distributed version control with git and mercurial

will assign the new file a new identity, and will not carry the rename
operation through later merges. It’s thus important that you use hg

mv to do the rename (though if you forget, there is a way to recover,
as long as you remember before you commit).

Changing the current commit without first committing

We know that all commits are, by definition, read-only. Their GUID
hash IDs are determined by their contents (and as we saw in Chap-
ter 4, all the commits leading to that commit as well): if you were to
somehow change the contents, the commit would acquire a new, dif-
ferent GUID. We saw how this works with the --amend option: the
commit gets pushed aside, replaced with the new one.

We have also seen that when we use the checkout verb to change
the current commit, the work-tree contents are replaced with the
contents of the target commit. This happens in both VCSes, both of
which have a work-tree. This rule holds for Git’s index too: checking
out some other commit requires changing the contents of both the
index and the work-tree. So the read/write areas—the work-tree, and
the index if there is one—are clobbered, or at least partly overwritten,
by a checkout operation.

If we do some work, then make a commit, this new read-only
commit saves all the work we did, not just now, but forever.22 But 22 This is certainly true in Mercurial,

which has no index in the way. But
what about Git, where the commit saves
the index but not the work-tree? If the
index and work-tree match, are you
safe? What if they differ?

Except for untracked files, if the index
and work-tree match, you are always
safe after a commit in Git. The normal,
user-facing commands also verify
that nothing in the work-tree will be
clobbered if it differs from the index.

In a fundamental sense, though,
all file versions that are solely in the
work-tree, whether this is simply not
yet copied into the index, or untracked,
or untracked-and-ignored, are less
valuable to Git than those in the index,
since they do not get committed, and
hence have not become permanent
residents of the repository.

what if we have done a bunch of work, but have forgotten to commit
it? What happens if we change commits then? Git and Mercurial have
similar, but not quite identical, answers.

We already saw one example earlier in Git, when demonstrating
removed-from-the-index (and thus untracked) files. Git tries hard
to make sure we do not lose work here. But Git’s behavior in other
cases can be somewhat baffling. For instance, we are at the tip of our
side branch sidebr right now. As compared to our master branch, we
added a prototype koala file, marked koalas lazy, ignored *.notes,
and renamed README to README.md. In our Mercurial repository, we
did the same things (though the other branch is default rather than
master). Let’s add a new file, but not commit it, then attempt to
switch branches:

$ echo new file > newfile.txt
$ git add newfile.txt
$ git checkout master
A newfile.txt
Switched to branch ’master’

This is new: checkout seems to be running status. Well, almost—
let’s run our own and compare: Exercise 7.7: Predict output of the long

form of git status.



working tree states: commits vs work-tree 133

$ git status -s
A newfile.txt
?? kanga.notes
?? koala.notes

What happened? Why did Git let us change commits and branches
without first committing our new file? Why is the new file now
added in branch master? And where did these untracked files come
from?

Remember that all of our changes are taking place in the index
and the work-tree. None of these have been committed yet, and
while the index is a proposed commit, it’s not an actual commit.
Git is able to change the current commit without having to touch
newfile.txt in the index or the work-tree. So this is exactly what Git
does: it moves your HEAD and replaces index contents where it must,
but leaves the rest of the index alone. It replaces work-tree contents
where it must, but leaves the rest of the work-tree alone. The output
from status is not telling us that newfile.txt is added to a commit,
but rather that newfile.txt is in the index and not in HEAD.

Similarly, the two notes files are untracked, i.e., in the work-tree
but not in the index. Git did not have to touch them at all, so it
didn’t. But Git did have to remove the .gitignore file, which is in
the tip commit of sidebr but is not in the current, tip of master, com-
mit. So these files are now untracked but not ignored, and hence
show up in the status.

If we had changed a file—in either the index or the work-tree—that
Git would have had to replace during the checkout, Git would simply
refuse the checkout, as we saw earlier. This means any changes that
Git does carry across the checkout are usually trivial to carry back
across a checkout back to the original branch. If you forgot to com- Exercise 7.8: Determine whether this

kind of change-carrying checkout
is always trivially reversible. Hint:
enumerate the various states for each
version of a file: modified in the index
compared to HEAD, new in the index,
modified in the work-tree, and so on.
Remember that HEAD changes twice
during the switch and switch-back
process.

mit, you can return to your original branch, make your commit, and
then switch to the branch you wanted to work on.

Let’s clean this up by switching back to sidebr and then removing
newfile.txt from both index and work-tree:

$ git checkout sidebr
A newfile.txt
Switched to branch ’sidebr’
$ git rm newfile.txt
error: the following file has changes staged in the index:

newfile.txt
(use -cached to keep the file, or -f to force removal)
$ git rm -f newfile.txt
rm ’newfile.txt’

As before, Git carries the extra index entry for the new file across the
checkout step. It then tells us that a plain removal will lose data, i.e.,
that newfile.txt in the index differs from newfile.txt in HEAD (triv-



134 distributed version control with git and mercurial

ially true since it doesn’t exist in HEAD). The forceful removal works
and the work-tree is clean. The two notes files are still untracked, but
now Git reads .gitignore and knows not to complain about them, as
they are untracked-and-ignored.

We can try the same in Mercurial, but it behaves differently:

$ echo new file > newfile.txt
$ hg add newfile.txt
$ hg checkout default
abort: uncommitted changes
(commit or update --clean to discard changes)

Since Mercurial lacks this intermediate index, it has no place to carry
the uncommitted change. It simply rejects the attempt to change
branches. We can remove the file from the manifest: Exercise 7.9: Try using

hg rm newfile.txt here instead.
$ hg forget newfile.txt

and it goes back to being untracked, after which we must remove it
manually.23 23 We could also use

hg update --clean default to
remove the added file and switch
branches.

Just like Git, if we were to switch to the main branch and run the
status command, the notes files would show up as untracked. But
Mercurial has one other surprise for us. Let’s modify koala.txt

again, deliberately fail to commit it, and check out the commit from
before we marked koalas lazy. This is revision 2 (we can find the
number using hg log ):

$ echo koalas have two thumbs on each front paw >> koala.txt
$ hg update -r 2
merging koala.txt
warning: conflicts while merging koala.txt! (edit, then use ’hg resolve --mark’)
1 files updated, 0 files merged, 2 files removed, 1 files unresolved
use ’hg resolve’ to retry unresolved file merges

What has happened here is that Mercurial has attempted to merge our
uncommitted change to koala.txt into the version stored in revision
2.24 The merge failed with a conflict. Since we have not yet covered 24 If you want it, Git can do this as well,

using git checkout --merge. We will
consider this more later.

the mechanics of merges, let’s do a discarding update back to the tip
commit:

$ hg checkout --clean -r tip
3 files updated, 0 files merged, 1 files removed, 0 files unresolved
$ hg status
? koala.txt.orig

This .orig file is left behind by the failed merge; we can just remove
it now:

$ rm koala.txt.orig



working tree states: commits vs work-tree 135

The main takeaway here is to be careful in Mercurial: check your
status before switching revisions, lest it attempt to merge existing
changes with the target revision; This is also wise in Git, even though
its safety checks and default checkout mode are a little safer than
Mercurial’s here.

A side note on configuration files

Projects that need configuration may come with a sample configu- Note that it is a good idea for com-
plex configurations to allow for future
extensions. There are many ways to
handle this, including flexible text for-
mats like those used by the VCSes, or
version-numbered configurations with
upgrade and downgrade operations.
Note that any version numbers for the
configurations are usually only loosely
coupled to the versioning of the code
that uses them.

ration, and/or a template configuration, and/or may create a real
configuration during installation. But unless this configuration is
strongly tied to specific commits (so that it should change on each
checkout), it should be outside the versioned area entirely—as is true
of Git and Mercurial configurations, for instance—or else should be
left untracked-and-ignored.

(There are some borderline cases, and there are cases where Git
itself gets this wrong. For instance, .gitattributes files are carried
with each commit, which is generally the correct thing to do, but
these can refer to drivers that are defined in uncommitted configura-
tion files, which is wrong.)

Summary

The status command will show you the state of your as-yet-uncommitted
next commit, as compared to your existing, permanent current com-
mit. In Mercurial, this is simply your current commit “.” versus your
work-tree: there is nothing standing in the way between them. Since
Git has its index in the way, this is your current commit HEAD versus
your index, and Git will also show you the state of your work-tree
as compared to your index: this is what you could copy into your in-
dex to change what will be in your next commit. Each file, indicated
by a path name, can be in one of three states: tracked, untracked, or
untracked-and-ignored. We normally shorten the last to just “ignored”,
but only untracked files can be ignored. Meanwhile, any file that is
now tracked, or was tracked due to the current commit, can be newly
added, modified, unmodified, deleted/removed, or renamed.

The work-tree as a whole—and in Git’s case, the index that holds
the next commit and that we generally change by copying from our
work-tree—can itself be clean or dirty, based on whether any tracked
files in it differ from their current-commit counterparts. If any files
are new or deleted or renamed, the index or work-tree is automat-
ically dirty until we commit even if the remaining files’ contents
themselves are unchanged. It’s wise to check the status as carefully
as you can before committing and moving on.



136 distributed version control with git and mercurial

Mercurial will attempt to merge uncommitted work-tree changes
when switching commits, so be sure to check your status, and do not
commit files that should be ignored.

If you commit a file that should have been ignored, that file is now
tracked, and will be tracked every time that commit is extracted via
checkout. If you move from a commit where the file is tracked to
one where it is not, the VCS will remove the file.25 If you do this by 25 As always, this means removal from

the work-tree in both Git and Mercurial.
Git, of course, removes it from the
index as well when you move from a
commit that has the file to one that does
not.

mistake and have not published the commit, you can fix it. You already
know how to “amend”—really, replace—the most recent commit.
We will see some techniques for more extensive history editing soon
(XXX when?), and cover ways to take such files out of commits with-
out losing them entirely (though usually the easiest way is just “copy
somewhere else”).



8
Merges

In Chapter 3, we took a high level look at merging. Specifically, we
saw that the point of a typical merge is to combine some series of
changes from two or more lines of development. We can now look at
this process in detail, including things that can go wrong and what
there is to do about them. There are some fairly major differences
between the underlying methods used in Git and Mercurial, too.

By the end of this chapter, you will know how to tell Git and Mer-
curial to make merges. You will know what a merge conflict within a
file looks like, and what to do about it. You will see an example of a
high level merge conflict, how these differ in Git and Mercurial, and
what to do about them. Because Git leaves many implementation
details somewhat exposed, you will see that the way Git records an
ongoing merge and its conflicts. (Mercurial keeps these well hidden,
making it much easier to use, though less flexible in some uncommon
cases.) We will also revisit Git’s fast-forward and squash cases.

An easy merge, in Git and in Mercurial

Before we dive into the mechanics of merging, let’s use our existing
repository-so-far to merge our koala work into our main-line branch,
master or default. In Git, we need two commands: Git’s remark about removing README,

which is shown here, may become
invisible, wiped out by the editor.
Depending on your system, editor, and
other configuration items, it may re-
appear once you exit the editor. It’s not
important either way, since Git repeats
the information in the merge summary.

$ git checkout master
Switched to branch ’master’
$ git merge sidebr
Removing README

This brings up our editor on the initial message:

Merge branch ’sidebr’

# Please enter a commit message to explain why this merge is necessary,
# especially if it merges an updated upstream into a topic branch.
#
# Lines starting with ’#’ will be ignored, and an empty message aborts



138 distributed version control with git and mercurial

# the commit.

We need not actually enter anything here, if this default message is
sufficient.1 We can just exit the editor without re-writing the file at 1 It’s not. In fact, this message is espe-

cially bad, and we will fix it soon.all, after which Git produces this merge summary:2
2 Note that Git now repeats the message
about removing README, which is why
losing one earlier is not that important.

Merge made by the ’recursive’ strategy.
.gitignore | 1 +
README | 1 -
README.md | 2 ++
koala.txt | 2 ++
4 files changed, 5 insertions(+), 1 deletion(-)
create mode 100644 .gitignore
delete mode 100644 README
create mode 100644 README.md
create mode 100644 koala.txt

Note that Git has already made the final merge commit.3 When 3 If we do discover that the merge result
is incorrect, we can fix it in a subse-
quent, ordinary, non-merge commit.
Or, we can fix it and amend the merge.
Or, using Git’s --no-commit option to
make Git behave like Mercurial, we can
delay the merge commit until after we
have checked the result and made any
necessary fixes. There’s no one correct
way to deal with this. We will see more
about this later.

we try this same sequence in Mercurial, it will just print a reminder
that we should commit, perhaps after carefully inspecting the merge
result. We mentioned this difference in Chapter 3, and the likely
reasons for it: Mercurial’s --amend came relatively later in its de-
velopment, so it still pauses in between if you discover you need to
make some changes that the VCS did not itself make automatically.

Let’s do the same merge in Mercurial now:

$ hg checkout default
2 files updated, 0 files merged, 3 files removed, 0 files unresolved
$ hg merge sidebr
3 files updated, 0 files merged, 1 files removed, 0 files unresolved
(branch merge, don’t forget to commit)

We can commit now in Mercurial, to make it behave more like Git;
let’s do that for the moment. As with Git, this brings up your chosen
editor, giving you a chance to write a merge message. Unlike Git,
however, the initial merge message is empty, and we must write one:

$ hg commit

HG: Enter commit message. Lines beginning with ’HG:’ are removed.
HG: Leave message empty to abort commit.
HG: -
HG: user: Chris Torek <chris.torek@example.com>
HG: branch merge
HG: branch ’default’
HG: changed .hgignore
HG: changed README.md
HG: changed koala.txt
HG: removed README

Let’s use merge initial koala work as our message, then write out
the file and exit the editor. Mercurial makes the commit, and we now



merges 139

have the same things—the same contents for our two branches—in
either VCS. In other words, despite some minor differences such as
two vs three commands, the merge result is the same in both systems.
Both find the same merge base commit; both combine the same sets
of changes; and both commit the same result. (Mercurial did force us
to write a much better merge message.)

What’s in a merge commit

Our new commit has the same standard metadata as any non-merge
commit: an author name, email, and date; the same for a commit-
ter, in Git but not Mercurial; parent commit IDs (two IDs this time,
instead of just the usual one); associated source tree; and a log mes-
sage. Let’s look at how these VCSes show the merge:

$ git log
commit 3d8e089219d8a813b3907a511a9e31b70adc0f7e
Merge: 3c345b0 000d8ea
Author: Chris Torek <chris.torek@example.com>
Date: Sat Aug 19 17:19:17 2017 -0700

Merge branch ’sidebr’

Git’s output is fairly terse, but does note that this new commit is a
merge, using this extra Merge: line. Git prints an abbreviated hash
for each of the two parents, and otherwise shows us the commit as
usual.

$ hg log
changeset: 6:077bc776d123
tag: tip
parent: 1:d05b1df8b8f6
parent: 5:5f5df3fc4f1c
user: Chris Torek <chris.torek@example.com>
date: Sat Aug 19 17:40:48 2017 -0700
summary: merge iniital koala work

As with Git, Mercurial’s output strongly resembles that for a non-
merge commit, except that it prints both parent revision numbers (as
both locally-sequential number and abbreviated hash).

We can see what’s actually in the merge by looking at the work-
tree. In Mercurial, the work-tree is the proposed next commit, which
should exactly match the current commit, so this is automatically
true. In Git, the index, not the work-tree, is the proposed next com-
mit, but a successful merge updates the work-tree so that all of
the tracked files in the work-tree match their versions in the in-
dex. Of course, if you’re not quite sure, you should use the VCS’s
status command to double check: if the status is clean, the work-tree
matches the index and the index matches the HEAD commit (Git), or



140 distributed version control with git and mercurial

the work-tree matches the current commit (Mercurial), and hence
what’s in the work-tree is what’s in the commit.

Most of the changes we brought in from the side branch were
simply creating new files. This is one of the easiest cases for a merge:
the VCS simply notes that the file did not exist in the merge base, still
does not exist in one of the two branch tips or heads, and does exist
in the other branch tip or head. The correct result of such a merge is
to take the new file, and that’s what Git and Mercurial did here.

Note that both Git and Mercurial have claimed to have deleted/re-
moved README and created or modified README.md. Here, Git says
it created the file, while Mercurial says it modified the file. This is be-
cause Mercurial managed to identify the file named README in the
main-line branch with the file named README.md in the koala branch.
At a high level, Mercurial saw that one of the changes we made on
the side branch, to rename the file, should be brought into the main
line.

This idea of file identity, which we noted all the way back in Chap-
ter 1, is one of the keys to proper merging. Recall the brief discussion
of renaming work-tree files from Chapter 7, page 130. In Mercurial,
the rename is something we recorded when we ran hg mv. Although
we used git mv to rename the file in Git, Git did not actually record
a rename at that time. Instead, it attempts to detect the rename now,
when we do the merge. In fact, Git failed to detect the rename, so it
really did delete README and create README.md.

Fortunately, the effect was the same. Most of the time, these me-
chanics don’t matter that much, but we’ll soon use this same tech-
nique, where Git gets this wrong while Mercurial gets it right, to
show one of the ways merges can go wrong. For now, just note that
file create, delete, or rename operations occur at a sort of higher level:
they affect the set of files in the commit, rather than the contents of any
one particular file. It’s in these high level operations where Git and
Mercurial differ the most.

First and second parent

A DAG makes no special distinction between multiple parents of a
commit node, but Git and Mercurial do: the first parent is always the
commit that was current when the merge occurred. In other words,
following just first parents follows the main line of the branch’s de-
velopment.

Mercurial does not need this property as often as Git, because
each commit records its branch name: the merge we just created on
branch default has one parent that’s also on default—this is the
one numbered 1:d05b1df8b8f6—and one parent that’s on sidebr.



merges 141

Looking at the graph later, it is obvious that we merged sidebr into
default.

In Git’s case, the side-branch name appears only in the commit
message, which of course we could have edited to get rid of the word
sidebr. Moreover, now that we have merged the koala work, we can
delete the branch name sidebr. As we saw in Chapter 2, page 41, our
koala commits are now on both branches. The name sidebr is a spec-
tacularly bad branch name. Deleting it leaves all our commits intact,
retained through the master branch. That might be a good idea. We
can also amend our unpublished merge commit to improve the com-
mit message. Let’s do that now, while we are sure it’s unpublished,
using the better commit message we wrote for Mercurial:

$ git commit --amend -m ’merge initial koala work’
[master edb2c66] merge initial koala work
Date: ...

We can now delete the bad branch name:

$ git branch -d sidebr
Deleted branch sidebr (was 000d8ea).

In Mercurial, we are stuck with the bad branch name, but now
that we have deleted it in Git, how do we know which commits were
made on the “main line” master branch, and which were brought in
via merging? This is where first vs non-first4 parent lineage comes in. 4 Git’s merge commits allow more than

two parents. We could say “first vs
second” here, but the general case in
Git is first, or not-first.

Let’s take a look at two different graphical git log outputs, using
the --oneline option:

$ git log --graph --oneline

* edb2c66 merge initial koala work
|\
| * 000d8ea rename README
| * b6c0ebb ignore *.notes
| * 0cbdbdb mark koalas lazy
| * 49d5fae add prototype koala file

* | 3c345b0 add a kangaroo
|/

* 5318e61 initial commit
$ git log --first-parent --graph --oneline

* edb2c66 merge initial koala work

* 3c345b0 add a kangaroo

* 5318e61 initial commit

By directing Git to ignore the non-first commits, we get a shortened
history, showing only the “main line” commits, including the merges
that brought in other work. In other words, we see only the merge
itself. Even if the work we did on the side or feature branch was very
complicated, it simply appears on the main line in its final form. Exercise 8.1: What if the work is in-

complete? Is it a good idea to merge it
yet? Think of all the reasons you can to
merge earlier or later.

Even in Mercurial, though, both parents may come from a single
branch. That is, we can create several heads—Git-style branches—



142 distributed version control with git and mercurial

within a Mercurial named branch, and then merge two of them. We
will see several cases of this soon. In this case, you can run into the Exercise 8.2: You might try to use

Mercurial’s repository-level numbering
to guess which parent is which. When
does this work, and when does it fail?

same the problem of deciding, later, which parent was which at the
time of the merge. Since Mercurial does exactly the same thing as
Git, the follow-first-parent method works for both systems. How-
ever, for whatever reason, Mercurial’s function that first-parent
following is well-hidden, using the underscore-prefixed keyword
_firstancestors. This may be because users are mostly assumed to
use branch names, rather than tricky first-parent notions. Except for
their permanence, branch names are certainly the more friendly way
to work here.

BEGIN OLDER STUFF

Many-parent merges

A non-merge commit normally has exactly one parent.5 Mercurial 5 Remember, though, that a root commit
has no parents.limits commits to at most two parents, and any two-parent commit is

a merge. Git, on the other hand, allows a commit to have two or more
parents. Git calls these three-or-more-parent merges octopus merges.
Of course, even in this kind of merge there must still be a second par-
ent, and that suffices to mark the commit as a merge. Moreover, there
is nothing really special about an octopus merge: While Git allows
you to merge both B and C into A in one step, Mercurial allows you to
merge B into A, and then merge C into A. These two pairwise merges
will produce the same end result when there are no conflicts. When
there are conflicts, Git will refuse to do an octopus merge anyway.

We will do our two merges below as two separate steps, but in
Git, we could try merging Alice’s wombats and Bob’s kangaroos into
the develop line in one octopus merge. In theory, this might help
emphasize the unprivileged status of the two feature branches. In
practice, octopus merges seem mainly useful for showing off your
Git-fu. And, in any case, we have arranged for Alice and Bob to have
a merge conflict.

Finding merge bases

Recall the definition of Lowest Common Ancestor from Chapter 2.
We mentioned then that the LCA is the merge base. Both Git and Mer-
curial compute the merge base in the same way, by finding an LCA
node in the commit DAG, using the current and other commits as
the starting point for this search. For an octopus merge, Git uses all
the input commits. That is, we simply generalize the two-node LCA
algorithm to many nodes, finding whichever ancestors are common
to all of them, and then use the lowest.



merges 143

We also mentioned that in some complex DAGs, there may be more
than one merge base. Git and Mercurial handle this case differently.
We will address Git’s method soon. Mercurial takes a very simple
approach here: it simply picks one LCA node at random. In most
cases this works well enough, and multiple LCAs themselves are
rare enough, that this simple approach is usually fine. It is also much
easier to describe, so we will assume for the moment that there is a
single LCA to use.

figure for sequences of merges with merge bases goes here Figure 8.1: Sequence of merges, with
stitch pattern.

Before we go on to look at the mechanics of merging, consider
Figure 8.1, in which several topic branches are repeatedly merged into
a branch where we aggregate work for the next release. For instance,
we might have Alice (or a whole group) working on wombats and
Bob (or another group) on kangaroos, and we merge their work back
to the overall development branch at regular intervals, or whenever
it is deemed ready for internal testing, or whatever other criteria we
choose. Note that each time we do a new merge, the merge base for
that merge already includes all the work leading up to the point of
the previous merge from that branch.

This is a significant factor in determining both when and why we
merge. The more often we merge, the smaller the divergence at the
next merge. Of course, each merge introduces some changes, which
may disrupt other people’s work—which itself is a reason to have
them work on topic branches, as that keeps them isolated from the
merge until they are ready to pick up others’ work. Also, each merge
takes time and effort that could go towards fixing bugs or developing
new features. All of these play a role in determining how often to
merge, but the fact that a subsequent merge will have a new merge
base is the principle reason to make multiple merges.

figure for criss-cross merge goes here Figure 8.2: Criss-cross merge.

Later, we will see tools that let you defer or avoid merging, and
consider cases where these are better plans (if, e.g., the short-term
gains from avoiding the merge outweigh any long-term gains from
merging). We will also revisit this idea several times when we con-
sider such items as over-eager merges,6 bad merges, and criss-cross 6 “Over-eager” is not a technical term.

I use this adjective to describe a merge
made too early, before all the work in,
e.g., a feature branch is actually ready,
so that some or all of it must be backed
out.

merges. Criss-cross merges occur when you merge a topic branch into
a next-release branch, but then also merge the next-release branch
back into the topic branch (see Figure 8.2). These criss-cross merges
can produce DAGs with multiple LCAs. There is nothing fundamen-
tally wrong with this, but you will need to know how it affects future



144 distributed version control with git and mercurial

merges.

Finding changes since the common base

Having found the merge base, the VCS then computes two change-
sets: one from the merge base to the tip of the current commit, and
one from the merge base to the tip of the other commit. In Mercu-
rial’s case, it already stores changesets, so all it has to do is aggregate
the changes that lead from the base to the two commits in ques-
tion. In Git’s case, it stores snapshots, so it must now—on demand—
produce two diffs, comparing the base to each commit. Here we also
run into another difference between the two VCSes: Git stores only
file contents, and must guess at any renames that may have occurred,
while Mercurial records changes to directories and knows for certain
whether dir/file was renamed, or even deleted and re-created. Git’s
guesses are based on its similarity index, whose computation is a bit
complex and can be adjusted with various flags if needed.

These two changesets drive all of the automated merge action,
so it is important for the VCS to get them right. Both systems have
advantages: Git can find a rename even if the user failed to record
it properly, and handles files that were improperly deleted and then
resurrected, while Mercurial finds renames when Git fails to do so.
Which method is better depends on your particular usage. In the
end, both seem to be about equally effective.

Combining changesets

The point of getting the two separate changesets is to allow the VCS
to combine them. Our goal—or at least, what the VCS assumes is our
goal—is to keep one copy of each change introduced into some file.

For instance, suppose Bob is running a merge to bring in Alice’s
changes. Suppose further that Alice fixed a bug in wombat.c, but
that both Alice and Bob noticed recently that some other file (such
as doc.txt) contained the misspelling “woombat”. Both removed the
extra “o”, so same file is changed between their common merge base
and both Alice’s and Bob’s more-recent commits.

Both Git and Mercurial generally operate line-by-line when using
these comparisons. They therefore show this change as:

the ability of
-the woombat to move at high speed,
+the wombat to move at high speed,
so that

(though both VCSes keep several additional lines of context). Since



merges 145

both Alice and Bob made the same change to the same area of the same
file, both VCSes will keep a single copy of this change.

Alice’s fixes to wombat.c, on the other hand, have no counter-
part in Bob’s changes since the common merge base commit. Both
VCSes will use the context of the base-to-Alice diff to find where Al-
ice’s changes should go into wombat.c (in case Bob has made other
changes that have moved the lines around).

Doing a simple, unconflicted merge

We will play the part of Carol7 who is tasked with combining Alice’s 7 This is actually a somewhat unusual
method. More typically, whoever goes
second—either Alice or Bob, but not
both—would have to merge or rebase
just her or his work. We’ll see this in a
moment.

and Bob’s branches into the develop branch. Furthermore, we have
set all this up so that Alice, Bob, and Carol all started with the same
commit graph.8 Both Alice and Bob have added new commits, but on

8 This is so that we can predict what
will happen as we go along. If they all
started with different commit graphs,
we would need extra steps to resyn-
chronize, and along the way, we would
likely find different merge bases, hit
different conflicts, and so on.

different branches. We have also arranged to have a conflict when we
merge Bob’s work, but we will do our first merge (of Alice’s work)
without one.

As Carol, we start by obtaining (fetching in Git, pulling in Mer-
curial) both other branches, and checking out the develop branch.
The exact commands will depend on the VCS—and in Git, whether
everyone shares work through a central point—but the approach is
the same.

For Git, if we are working without a central server, we would use:

git fetch alice get Alice’s changes
git fetch bob get Bob’s changes
git checkout develop get ready to merge
git merge --no-ff alice/wombat bring in Alice’s changes
git merge --no-ff bob/kangaroo attempt to bring in Bob’s

(we’ll see what --no-ff is about soon). Remember that Git renames
branches, so Alice and Bob may work directly in wombat and kangaroo,
but Carol must now refer to their work as alice/wombat and bob/kangaroo.

If Alice and Bob push their work to a central server named origin,
Carol might use this instead:

git fetch origin get everything
git checkout develop get ready to merge
git merge --no-ff origin/wombat bring in Alice’s changes
git merge --no-ff origin/kangaroo attempt to bring in Bob’s

For Mercurial, we might use:

hg pull alice
hg pull bob

or
hg pull default or whatever name Carol uses for the server

then, after all pull commands:



146 distributed version control with git and mercurial

hg update develop
hg merge wombat
hg commit -m ’merge branch wombat into develop’
hg merge kangaroo
hg commit -m ’merge branch kangaroo into develop’

Since Mercurial does not rename branches, it does not matter whether
we pull the two branches directly from Alice and Bob, or from a
shared server.

When using Git, Carol might prefer to fast-forward her own local
wombat and kangaroo branches, so that she does not have to type
origin/. This makes the command sequence longer, though, and the
only real difference it makes is to change Git’s default merge-commit
log message: “merge branch wombat into develop” vs “merge
remote-tracking branch origin/wombat into develop”. We will see
more about fast-forward soon, and—unrelated to fast-forward—some
short cuts to avoid typing names like origin or alice or default
as often. Meanwhile, for now, let’s assume that we can use just the
names wombat and kangaroo for the two branches (or you can men-
tally replace each name with an appropriately-prefixed name).

Again, we expect a conflict on the second merge, when we try to
bring in Bob’s changes. For now let’s focus on what happens with
Alice’s. Note that regardless of which VCS we are using, there are
really just three steps to the the first merge: Obtain the commits to be
merged; check out the branch that will hold the merge; and perform-
and-commit the merge.

wombat

develop

kangaroo

Figure 8.3: Commit graph before first
merge

Carol’s current commit graph, or at least an interesting portion of
it, is shown here in Figure 8.3. The commit drawn in blue will be the
merge base when Carol runs merge wombat. (Note that in Git, both
Alice’s and Bob’s branches descend from this base commit, and it is
on all three branches. In Mercurial, no commits share branches. The
head of develop is still the branch-point for the other two branches,
but unlike for Git, this has no particular consequences.) When Carol
instructs the VCS to do the first merge, the VCS finds the LCA of the
current commit (the Git-tip or Mercurial-head of develop) and the
other commit (the tip or head of wombat), which is that blue commit.
The VCS therefore does not even need to diff the merge base against
the current commit—these are the same commit so this diff is triv-
ially empty—nor does it really need to diff the merge base against



merges 147

the other commit.9 The combined diffs will just be the second set 9 Mercurial must still build up the
combined diffs, though, since the
final changeset for the merge will be
whatever it takes to convert from the
blue commit to wombat.

of diffs, and the result of applying the combined diffs to the current
commit will be identical to the work tree associated with the tip (Git)
or head (Mercurial) commit of wombat.

This triviality is in fact why we must supply the --no-ff option
to Git. Specifically, when the merge base is the current commit, Git
will normally not do a merge at all,10 and instead fast-forward the 10 This behavior is suppressed not

only with the --no-ff option, but also
by default when the other commit is
named via an annotated tag. Annotated
tags have no counterpart in Mercurial
and are left to Chapter XfutureX.

current branch label. In this particular case, the result would be to
change the develop branch label to point directly to the commit at
the tip of wombat. The Git documentation calls this a “fast-forward
merge,” but this is something of a misnomer, since a fast-forward is
not a merge at all.11 When you want to force a merge, you should 11 Fast-forward operations are not just

useful, but in fact crucial, for certain
cases in Git. We will see these later.

use the --no-ff option. It does not hurt to supply it every time you
want a real merge, since it is does nothing if Git was already going to
do a real merge.12For some workflows—including the one illustrated 12 If you want to suppress a merge, Git

offers --ff-only as well. Git’s default
action is to fast-forward the label if
possible, and do a merge if not, so
--ff-only is actually just a safety net:
it makes the merge command fail if
fast-forwarding is impossible.

here—you may want to force merge commits when bringing specific
topic or feature branches into a release or mastering branch. In our
case we also want to force a real merge simply to illustrate the merge!

There is no corresponding flag in Mercurial since its commits
are permanently affixed to a single branch. The notion of moving a
branch label is simply nonsensical in Mercurial, and there is no such
thing as a fast-forward.

wombat

develop

kangaroo

Figure 8.4: Commit graph after first
merge

In any case, once Carol has merged Alice’s work, her new commit
graph is the one shown here in Figure 8.4. Git makes the new com-
mit automatically, running Carol’s preferred editor so that she can
edit the log message. Mercurial makes Carol run hg commit . The
new commit has two parents: the previous tip (Git) or head (Mer-
curial) of develop and the merged-in other commit at the tip/head
of wombat. The source tree associated with this commit matches that
in Alice’s final commit. Git’s automatic log message is, or is similar Exercise 8.3: We claimed earlier that

merges do not just take one side or the
other of the merge, but this merge did
just take Alice’s side. Why?

to, “merge branch wombat into develop” or “merge remote-tracking
branch origin/wombat into develop” (this is somewhat Git-version-
dependent, and configurable as well).

This particular merge will always succeed for the same reason that
Git will try to do a fast-forward instead of a merge: Alice’s wombat

work starts from the tip/head of develop, so by definition there are
no conflicting changes on the “ours” side of the merge.



148 distributed version control with git and mercurial

Conflicts and conflict resolution

Now Carol will ask the VCS to merge Bob’s work. The command is
exactly the same except for the branch name, but this time, we had
Alice and Bob make sure that we get a conflict, so that we can resolve
it.

The diffs for a single file are like a set of instructions for doing delta
compression: delete something here and/or insert something else
there. If the change is purely deletion or purely insertion, we have
just that one directive; if the change is a replacement, we have a dele-
tion immediately followed by an insertion.13 13 The actual deltas, if any—remember

that while Mercurial uses changesets
internally, Git only stores deltas in
pack files—need not be line-oriented
like this. It is only the merge process
that, by default, works on a line-by-line
basis.

When the VCS finds, in the two sets of deltas for some file, the
same deletion-and/or-insertion sequence (disregarding exact position
whenever necessary, but always accounting for context), this is a
change that appears in both lines of development and the VCS takes
just one copy. When the VCS finds different deltas that do not conflict,
the VCS takes one copy of each. If, however, the VCS finds different
deltas that apply to the same lines (after accounting for context), it
declares a conflict. This can also occur even when the delta is the
same, if the two contexts differ. For instance, this “same change but
different context” conflict occurs when one side has the change just
before the end of a file, and the other side has the change not so close
to the end (because the second version of the file is longer).

This kind of conflict—the both-sides-modified, changes-collided
case—is called a modify/modify conflict. These are the most com-
mon conflicts. Besides this case, there are two more cases that may
cause the VCS to declare a conflict and stop. These are:

1. Create/create (or add/add) conflict. If a file did not exist in the
base commit, but does exist in both the current and other commits,
the VCS does not know which version of the file to use. (If both
new versions match exactly, Git will simply take one of them.
Must test this case in Mercurial.)

2. Modify/delete or rename/delete conflict. If the file did exist in the
base, but the file was modified (and/or renamed) on one side and
deleted on the other, the VCS does not know whether to keep the
change, or delete the file.

Note that it is not possible to have a create/modify conflict, as the
first implies that the file did not exist (was created on one side) and
the second implies that the file did exist (was modified on the other
side). For the same reason, create/delete is impossible as well.

The mechanisms Git and Mercurial use to record which files have
conflicts are different, but the kinds of conflicts recorded are the
same, and both VCSes will stop with the merge partly done and



merges 149

make you fix up the mess. At this point, you must use something—it
may be as simple as your file editor—to resolve each conflicted file,
and then tell the VCS that the file is resolved.

Resolving conflicts manually

Let’s consider a simple case of a merge conflict, where Alice and Bob
both fixed one line in a file, but made two different fixes.

As before, the merge base is the blue commit (which is the same
merge base as before), but this time, the set of changes from the
merge base to the current commit are not empty. In fact, these are the
same changes that Carol just brought in from Alice. The VCS also
finds the diff from the merge base to the tip (Git) or head (Mercurial)
of kangaroo, and attempts to combine them. Whenever Bob changed
a file that Alice did not, or their changes do not conflict, the VCS
combines them successfully, but for file doc.txt, we find that Alice
fixed some incorrect documentation, but Bob changed both code and
its documentation. Carol opens doc.txt in her editor and sees the
VCS’s result:

Some stuff here
that is the leading context.
<<<<<<< HEAD
Only red kangaroos are supported.
=======
Both red and gray kangaroos are supported.
>>>>>>> kangaroo
More stuff goes here
that is the trailing context.

The <<<<<<<, =======, and >>>>>>> markers are called conflict
markers, and they surround the conflicting text. There is one thing
missing here: what was in the base file before Alice and Bob changed
it? Both Git and Mercurial can show you the line that was in the
merge base version of the file, and I recommend enabling the option
that does this.14 To enable this in Git: 14 This option can produce suprising

results in Git when there are multiple
LCAs during a merge, but I think this is
still better than the default.

git config --global merge.conflictStyle diff3

To enable it in Mercurial, run hg config --edit , then use your
editor to set merge to :merge3 in the [ui] section:

[ui]
merge = :merge3

Once you have this set, the merge will show this instead:



150 distributed version control with git and mercurial

Some stuff here
that is the leading context.
<<<<<<< HEAD
Only red kangaroos are supported.
||||||| merged common ancestors
Only orange kangaroos are supported.
=======
Both red and grey kangaroos are supported.
>>>>>>> kangaroo
More stuff goes here
that is the trailing context.

At this point, it is your (or Carol’s) job to edit the file into a final
version. In this case, Carol must inspect the rest of Bob’s changes to
see whether Bob’s new claim about kangaroos is correct, but clearly
the original text was wrong, and one of the changes should be kept.15 15 Which new version is correct? I don’t

know, and neither do you. Carol may
have to figure it out herself, but Bob is
probably the best person to answer this
question, and hence is probably the best
person to do this merge.

If Bob’s version is right, Carol should delete Alice’s replacement line
and the original line and the conflict markers, leaving Bob’s change
in place. If Bob’s other change does not actually add support for
grey kangaroos, Carol should delete Bob’s replacement line, and the
original text and conflict markers, leaving Alice’s fix in place.

Once Carol has the correct file in the work tree, she should run:

git add doc.txt
or

hg resolve --mark doc.txt

To see which files still have unresolved merge conflicts, use git status

or hg resolve --list . If you have started resolving a file and real-
ize you have made a mess of it, you can restore the original conflicted
merge—complete with conflict markers—using git checkout --merge -- path

or hg resolve path . In Mercurial, you must run resolve with no
flag before marking the file as resolved, or else first re-mark it as unre-
solved using hg resolve --unmark .

For instance, suppose Carol tries to resolve the conflict, but ac-
cidentally deletes most of the file while writing it back to her work
tree, and then—thinking it is correctly resolved—runs git add doc.txt

or hg resolve --mark doc.txt . Fortunately, before committing,
Carol discovers her editing mistake. She can run:

git checkout --merge -- doc.txt
or

hg resolve --unmark doc.txt
hg resolve doc.txt

and then re-edit doc.txt.
There is a way to get either Alice’s or Bob’s version of the file

without having to edit out the conflict markers. Be careful when doing
this: it is possible to discard changes you wanted to keep. Suppose,



merges 151

for instance, that besides fixing the orange kangaroo, Alice fixed
that “woombat”, but Bob missed it. This change is therefore in the
diff going from the merge base to the current commit, but not in
the diff going from the merge base to Bob’s latest. If you resolve the
conflict by taking Bob’s version of the file, you will lose the fix for the
wombat. Nonetheless, this is a pretty handy trick, so here is how you
do this with Git:

git checkout --ours -- doc.txt Alice’s file
git checkout --theirs -- doc.txt Bob’s file

Alice’s file is “ours” because it is in the HEAD commit, and Bob’s file is
“theirs” because it is in the other commit.16 This is how you do it in 16 User CommaToast suggested this, on

StackOverflow, as a way to remember
the ours/theirs distinction: “I guess
since the head is the seat of the mind,
which is the source of identity, which is
the source of self, it makes a bit more
sense to think of whatever HEAD’s
pointing to as being ‘mine’ (‘ours’, since
I guess me and the HEAD makes two).
If nothing more, that’ll just be a good
mnemonic device.”

Mercurial:

hg resolve --tool :local doc.txt Alice’s file
hg resolve --tool :other doc.txt Bob’s file

Mercurial has an edge over Git for this particular case, because there
are additional tools available besides just :local and :other, which
we will get to in a moment, after we describe issues with automatic
merges.

The VCS is stupid: its merge is purely textual

Note that neither VCS understands anything about the nature of the
changes it is merging here. These merges are done strictly on the
basis of the file text, broken into individual lines. This is not always
suitable—for instance, merging XML-encoded data should prob-
ably be done quite differently—so both VCSes provide the ability
to use arbitrary, user-supplied custom merge drivers (Mercurial calls
these external merge drivers). Custom merge drivers can be difficult
to write (depending on the task to be solved) and there are rela-
tively few good examples of them. I found a simple one for Git at
https://gist.github.com/seanh/378623; this handles changelog
style files, merging them by treating them as insert-only and adding
the inserted text from the other in front of the inserted text from the
current commit.17 (That is, in the case where Bob is merging Alice’s 17 This is, in fact, a specialized sub-case

of Mercurial’s :union merge tool. Git
also has a union merge; we will see
details later.

changes, Alice’s changes go at the front of Bob’s changes. Further-
more, Bob’s changes must occur at the front of the common base
version, otherwise this merge driver stops, rejecting the merge.)

Both VCSes also provide a number of alternative built-in merge
algorithms. Git calls these strategies while Mercurial calls them merge
tools. Git has just a few built in strategies, called resolve, recursive,
octopus, ours, and subtree. Mercurial has more built-in tools, all pre-
fixed with a colon: :dump, :fail, :local, :merge, :merge-local, :merge-other,

https://gist.github.com/seanh/378623


152 distributed version control with git and mercurial

:merge3, :other, :prompt, :tagmerge, and :union. We will see in a moment
how to get Git’s default recursive strategy to implement Mercurial’s
:merge-local and :merge-other. (Mercurial’s tagmerge is marked
experimental; I have not used it.)

Both VCSes also share a peculiar feature with regard to their var-
ious merge drivers: both first attempt each file merge using an ex-
tremely simple—trivial, really—algorithm: if a file is unmodified on
one side, the VCS simply takes any modification found on the other
side. Only if this trivial algorithm fails will they run the strategy-
specific or custom or external merge driver. This is usually reason-
able, since the most common case by far occurs when at most one
side—current or other—has modified a file as compared to the base
version. Taking a file straight from one side or the other is very fast
as it is a simple copy operation. It also results in taking just one copy
of the one change. However, if you wanted some special action (such
as updating an internal date or counter) every time a file is merged,
and put that action into your merge driver, it would not happen for
these trivial merges. Mercurial provides a way to defeat the trivial
merge, allowing you to enforce the use of your external merge driver.
Git currently (as of Git version 2.12) does not: if the trivial merge
succeeds, it will ignore any custom merge driver.

Merge strategies, options, and tools

Before we move on, we should explore Git’s strategies and options,
and Mercurial’s built in merge tools, just a little bit more.

As we just saw, Carol can resolve a conflict in doc.txt by choos-
ing either version (Alice’s or Bob’s) of that file. Since Carol merged
Alice’s changes first, and Carol also sees that Bob not only fixed the
orange kangaroo but also added grey kangaroos, she might just take
Bob’s version. Alas, Bob did not notice the misspelled wombat. What
if Carol could direct the merge to take Bob’s version only where there
was a conflict, and otherwise combine both Alice’s and Bob’s fixes? In
this particular case, it’s easy for Carol to do this by hand, but in a
bigger set of changes, having the VCS do it for her would be a big
improvement. Both VCSes can indeed do this. In Git’s case, however,
we need to start by knowing that this will be the right way to resolve
the conflicts, so we will begin with Mercurial.

Mercurial’s hg resolve easily allows us to retry merges, mid-
merge, on a file-by-file basis, using a different Mercurial tool. Upon
discovering that Bob’s change should override Alice’s, Carol need
only re-run the merge of doc.txt using the :merge-other tool:

hg resolve --tool :merge-other doc.txt



merges 153

This tool keeps Carol’s current changes—which are just Alice’s,
really—wherever Bob’s do not conflict, but takes Bob’s changes wher-
ever they do conflict. (Remember that Bob’s is the “other” commit.)
By taking Bob’s changes, Mercurial automatically resolves the conflict
and the file is now merged correctly.

With Git, Carol can achieve the same result, although she must
choose it up front when running the initial merge, and then it applies
to every file.18To do so, she need only add --strategy-option theirs 18 Git does include a command, git

merge-file, that could fix this problem.
This command can be used at any time,
including in the middle of a conflicted
merge. It is not designed for this use
case, though, and needs a wrapper
script to make it work properly.

to the initial merge command:

git merge --no-ff --strategy-option theirs kangaroo

This theirs strategy option has the same effect as Mercurial’s
:merge-other merge tool, i.e., it keeps our changes (which are copied
from Alice’s changes) when they do not conflict with Bob’s, but
keeps Bob’s changes, discarding ours entirely, when they do.

As you might guess from the name strategy option, there are more
strategy options. In fact, there are quite a few, and this is one case
where Git’s merge is slightly better than Mercurial’s. The complete
list is fairly long (and gets longer with newer versions of Git), but
these are particularly noteworthy: ours, theirs, patience, and
rename-threshold=threshold. The name “strategy-option” is long
and tedious so from here on I will use the shorter spelling for this
option, which is -X. That is, instead of --strategy-option theirs,
we (or Carol) can write -X theirs.

We have already seen the -X theirs option; -X ours corresponds
to Mercurial’s :merge-local tool and simply chooses our change
when there is a conflict. For Carol’s merge, this would mean she
would keep Alice’s changes in favor of Bob’s, although she would
still pick up Bob’s changes where there is no conflict. Carol has dis-
covered that this would be wrong for this one file, on this one merge:
In the one conflicting case, fixing the orange kangaroos, -X ours or
:merge-local will keep the red kangaroo line, when we should keep
the red-or-grey line instead. The problem here is that neither -X op-
tion or merge tool is always right: you, the operator of the VCS, must
examine the conflict and determine which one (if any) is correct.

The -X patience option is short for the -X diff-algorithm=patience

option. This uses a slower (more CPU-intensive) diff engine than the
default -X diff-algorithm=myers diff. This CPU-intensive diff is
more often able to notice and discount trivial or accidental matches.19 19 These occur often in source code with

many blank lines, or lines consisting of
just one open or close brace, as is com-
mon in a lot of computer languages.
As computers get faster, this should
perhaps become the default, but the
time difference is still quite noticeable
on large merges.

The name patience is meant to imply that you will need more patience
when using it, but if you get difficult-to-resolve merge conflicts, it
may be worth trying.

The -X rename-threshold option sets the similarity threshold for
Git’s rename-detection. Remember that we said that Git must guess



154 distributed version control with git and mercurial

which files were renamed. By default, Git assumes that when file
is at least 50% similar to another file with a different file-name, the
second file came about by renaming the first file (and then maybe
changing it somewhat). You can change this threshold to any other
percentage. For instance, -X rename-threshold=75 requires that the
files be at least 75% similar. To see whether Git will detect a particu-
lar rename, you can run git diff with the --find-renames=threshold

option; see Chapter XX for details.
Besides these -X options, git merge provides the -s strategy

option.20 Most of these are specialized enough for us to ignore here, 20 This can be spelled
--strategy strategy, but I find this
is actually more confusing than just re-
membering -s and -X, with -X standing
for “extended”.

but we need to call one out in particular because it is easy to misuse.
Confusingly, git merge provides -s ours, but -s ours has a very

different action than -X ours. Git’s -s ours corresponds to Mercurial’s
:local merge tool, whose action is to ignore and discard every file from
the other commit, keeping the source tree the same as in the current
commit. The principle use for this kind of merge in Git is to kill off a
topic or feature branch, i.e., to merge its history back into the main-
line branch (while ignoring its contents), then delete the branch-name
entirely. This keeps the commits in the commit DAG for historical
examination, while discarding from the main-line branch all the work
that was done in the other branch, marking it as a failed experiment.
(We can, of course, do the same in Mercurial, using :local. However,
Mercurial’s branches cannot be killed, so there is no real point to
this.)

Note that Git has no strategy corresponding to Mercurial’s :other

merge tool. This merge tool is the symmetric opposite of :local,
keeping every other-commit file while ignoring and discarding ev-
ery current-commit (local) file while constructing the tree for the
merge. Git does not offer a -s theirs, but it is easy to synthesize it
(in fact, it is also easy to synthesize -s ours and Git probably should
omit this strategy as it is too close in spelling to the very different
-X ours). We will see how in a moment.

Git’s merge-file command does offer the equivalent of Mercu-
rial’s :union tool, but again, git merge-file is too awkward to
use directly. Mercurial’s remaining built-in tools, :dump, :fail, and
:prompt, have no corresponding equivalent in Git, but :dump is cov-
ered by Git’s index, and :fail is only needed to force the use of an
external merge driver (which, as we noted before, is not possible in
Git). Mercurial’s :prompt tool has little if any advantage over simply
editing the version of the file containing conflict markers.



merges 155

Why, and when, should we merge?

Although we have not yet covered rebasing, it is time to contrast
merge and rebase. Without going into any detail yet, rebasing in-
cludes the source-combining aspect of merging, but does not record
a merge in the commit graph. Rebasing works by copying commits,
then throwing away the originals, in favor of the new copies. This is
really the essential difference between the two. We’ll see more about
this in ??.

Let’s consider a more realistic merge sequence as well. Even if
Carol is supervising both Alice and Bob, it usually makes more sense
for the person who made a set of changes to integrate them. We saw
this just a moment ago when Carol had to figure out whether Bob’s
changes actually supported grey kangaroos. It seems likely that Bob
knows this offhand.

Let’s also assume that Alice and Bob are actually working on dif-
ferent features. Perhaps Alice is working on wombats while Bob
is working on kangaroos. (This would explain why Alice saw the
“woombat” typo.) Alice and Bob might work in their own private
branches, whose names we do not need to know.21 They will inte- 21 We may wind up seeing them in

Mercurial anyway.grate their work into the current development branch dev, probably
through some more-central repository, perhaps by giving it to Carol
when it is ready and conflict-free. To achieve this, Alice and Bob will
need to rebase22—but in order to get their rebases right, they must

22 Technically, only one will have to
rebase. Whoever is done first gets his or
her commits added first; then the other
must rebase.

know how to merge.
There is no hard and fast rule about when to rebase and when to

merge. However, a small change—just a few commits—that can be
reworked through rebasing, so that it looks like it was made after
(and with full knowledge of) changes made by someone else, in a
simple linear history, is often worth rebasing. This can make finding
problems easier. On the other hand, if you have a long or complex
history, or if you have published your commits and their hash IDs are
now spread through many repositories. rebasing is probably unwise.
You may introduce errors while adapting each copied commit to
its new home, and even if not, you must get everyone else who has
those commits to switch from the old, dull versions to the shiny new
copies.

If you have a line of development that will take a long time or in-
volve many people, and hence need to interact (i.e., re-combine) with
other branches more than once, it’s probably best to merge repeat-
edly. Each of these smaller merges allows the different developers
to coordinate with each other while the changes—and the problems
being solved—are still fresh in the minds of the people doing the
work.





Bibliography

Elaine B. Barker and Allen L. Roginsky. NIST SP 800-131a rev 1:
Transitions: Recommendation for transitioning the use of crypto-
graphic algorithms and key lengths. Technical report, National
Institute for Standards and Technology, November 2015. URL
http://www.nist.gov/manuscript-publication-search.cfm?pub_

id=919563. Supersedes SP 800-131A.

Michael A Bender, Martín Farach-Colton, Giridhar Pemmasani,
Steven Skiena, and Pavel Sumazin. Lowest common ancestors in
trees and directed acyclic graphs. Journal of Algorithms, 57(2):75–94,
2005.

Scott Chacon and Ben Straub. Pro Git. Apress, 2nd edition, 2014.

Graham Cormode and S Muthukrishnan. The string edit distance
matching problem with moves. ACM Transactions on Algorithms
(TALG), 3(1):2, 2007.

Quynh H. Dang. NIST SP 800-107 rev 1: Recommendation for
applications using approved hash algorithms. Technical report,
National Institute for Standards and Technology, August 2012. URL
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=911479.
Supersedes SP 800-107.

Quynh H. Dang. FIPS PUB 180-4: Secure hash stan-
dard. Technical report, National Institute for Standards
and Technology, August 2015. URL http://www.nist.gov/

manuscript-publication-search.cfm?pub_id=919060. Supersedes
FIPS 180-3.

Peter Heywood. The quagga and science: What does the future
hold for this extinct zebra? Perspectives in Biology and Medicine, 56(1):
53–64, 2013. doi: 10.1353/pbm.2013.0008. URL http://muse.jhu.

edu/journals/perspectives_in_biology_and_medicine/v056/56.

1.heywood.html. [Online: accessed: 2016-01-29].

http://www.nist.gov/manuscript-publication-search.cfm?pub_id=919563
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=919563
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=911479
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=919060
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=919060
http://muse.jhu.edu/journals/perspectives_in_biology_and_medicine/v056/56.1.heywood.html
http://muse.jhu.edu/journals/perspectives_in_biology_and_medicine/v056/56.1.heywood.html
http://muse.jhu.edu/journals/perspectives_in_biology_and_medicine/v056/56.1.heywood.html


158 distributed version control with git and mercurial

J. W. Hunt and M. D. McIlroy. An algorithm for differential file
comparison, 1975. URL http://www.cs.dartmouth.edu/%7Edoug/

diff.pdf.

John Kelsey and Bruce Schneier. Second preimages on n-bit hash
functions for much less than 2n work. In Advances in Cryptology—
EUROCRYPT 2005, pages 474–490. Springer, 2005.

Craig Larman and Victor R. Basili. Iterative and incremental devel-
opment: A brief history. IEEE Computer Society, 36(6):47–56, June
2003.

Jon Loeliger. Version Control with Git: Powerful Tools and Techniques for
Collaborative Software Development. O’Reilly Media, Inc., 1st edition,
2009. ISBN 0596520123, 9780596520120.

Eugene W. Myers. An O(ND) difference algorithm and its vari-
ations. Algorithmica, 1:251–266, 1986. doi: 10.1.1.4.6927. URL
http://xmailserver.org/diff2.pdf.

Bryan O’Sullivan. Mercurial: The Definitive Guide. O’Reilly Media,
Inc., 2009. ISBN 0596800673, 9780596800673.

programmers.stackexchange.com contributors. Empirical ev-
idence of popularity of Git and Mercurial, 2014a. URL https:

//programmers.stackexchange.com/q/128851. [Online: accessed:
2016-01-05].

programmers.stackexchange.com contributors. Are there any statis-
tics that show the popularity of Git versus SVN?, 2014b. URL
https://programmers.stackexchange.com/q/136079. [Online:
accessed: 2015-12-28].

Marc J. Rochkind. The Source Code Control System. Transactions on
Software Engineering, 1(4):364–370, Dec 1975.

David SH Rosenthal. Keeping bits safe: how hard can it be? Com-
munications of the ACM, 53(11):47–55, 2010.

Smithsonian Institution. Log book with computer bug, 1994. URL
http://americanhistory.si.edu/collections/search/object/

nmah_334663. [Online: accessed 2016-04-04].

stevemao. git log --tags changes the commits order, 2015. URL
https://stackoverflow.com/q/34462011/1256452. [Online: ac-
cessed: 2016-03-18].

Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and
Yarik Markov. The first collision for full SHA-1, 2017. URL https:

http://www.cs.dartmouth.edu/%7Edoug/diff.pdf
http://www.cs.dartmouth.edu/%7Edoug/diff.pdf
http://xmailserver.org/diff2.pdf
https://programmers.stackexchange.com/q/128851
https://programmers.stackexchange.com/q/128851
https://programmers.stackexchange.com/q/136079
http://americanhistory.si.edu/collections/search/object/nmah_334663
http://americanhistory.si.edu/collections/search/object/nmah_334663
https://stackoverflow.com/q/34462011/1256452
https://shattered.io/static/shattered.pdf
https://shattered.io/static/shattered.pdf


bibliography 159

//shattered.io/static/shattered.pdf. [Online: accessed 2017-03-
11].

Walter F Tichy. RCS—a system for version control. Software: Practice
and Experience, 15(7):637–654, 1985.

Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions
in the full SHA-1. In Advances in Cryptology—CRYPTO 2005, pages
17–36. Springer, 2005.

https://shattered.io/static/shattered.pdf
https://shattered.io/static/shattered.pdf

	Organization of this book
	ASCII
	Numbers
	Bugs
	Version Control: Concepts and History
	What is a version control system?
	Why have version control?
	Centralized vs distributed
	A side note on trees
	Repositories and work-trees
	Atomicity: what is the smallest unit of revision?
	Compression
	File identity
	Branching and version numbering
	Branching with names
	What is a branch? Do they exist without revisions?
	The other way around: are commits separable from branches?
	Commit identity
	Changesets and snapshots
	Merging
	Concurrency model
	What not to version
	Review of some common VCSes

	Git, Mercurial, and graph theory
	Graphs, directed graphs, and cycles
	Lowest Common Ancestor
	Aside: graphs are everywhere
	Commit DAGs
	Commit graphs, commit ordering, and reachability
	Subsetting the commit DAG
	Symmetric differences and merge bases
	Commit graph vs commit content

	Commits, files, diffs, and merges
	What's in a commit
	Files have names
	Git and Mercurial only store files
	Character encodings
	Pathname encodings
	Viewing file changes by comparing one commit to another
	What's in a diff
	A collection of file diffs makes a changeset
	You can diff any commit against any other commit
	The diff is not the way the author changed things
	A high level view of merging
	Two commits and a merge base
	Merge runs two diffs
	Combining changesets
	Note: Readers not interested in details about diff algoritms may skip the rest of this chapter.
	Minimal edit distances
	Longest Common Subsequence and the Myers algorithm
	Git: minimal, patience, and histogram diffs

	Distributing repositories
	Hashing
	Avoiding accidental hash collisions
	How DAG + GUID = distributed
	Push, pull, fetch
	DAGs, heads, and branch tips, oh my!
	Automatic corruption detection and Merkle trees
	Note: Readers not interested in details regarding hash collisions, whether accidental or malicious, may skip the rest of this chapter.
	Hashing and accidental collisions
	Hashing and deliberate collisions

	Basic setup and viewing
	Configuration mechanisms
	Configuring your identity
	Additional configuration
	Viewing
	Get the repository for Git or Mercurial itself
	Viewing branches
	Current branch and current revision
	Git's HEAD
	Viewing commits
	Sample log output
	Limiting or augmenting the commits shown
	Viewing with a detached HEAD

	Getting started
	New projects: create, commit, and view commits
	Switching revisions
	Git: switching revisions
	Mercurial: switching revisions
	Creating a new branch
	Git: creating a new branch
	Mercurial: creating a new branch
	Both: making changes on the side branch
	Git's status versus Mercurial's
	Committing a mistake: getting our add wrong
	A good commit message
	Fixing an incorrect commit
	Git: fixing an incorrect commit
	Mercurial: fixing an incorrect commit
	Both: fixing an incorrect commit
	How HEAD works and branches grow in Git
	Cloning existing projects
	Git: cloning existing projects
	Mercurial: cloning existing projects
	Cloning our three-commit repository
	Git: cloning our three-commit repository
	Mercurial: cloning our three-commit repository
	Both: cloning our three-commit repository

	Working tree states: commits vs work-tree
	Commits are forever …until removed
	Working trees are not permanent and can be clean or dirty
	Mercurial: the work tree is like a changeable commit
	Git's index
	Git: the index contains the proposed commit
	Git's index is not so easy to see, so use git status
	Summary of Git's index, so far
	New files, removed files, and untracked files
	Summary: what it means for a file to be tracked or untracked
	Git's index vs Mercurial's state
	Ignored files
	Tracked files are never ignored
	Which files are untracked?
	Making ignored files
	Renaming files
	Changing the current commit without first committing
	A side note on configuration files
	Summary

	Merges
	An easy merge, in Git and in Mercurial
	What's in a merge commit
	First and second parent
	Many-parent merges
	Finding merge bases
	Finding changes since the common base
	Combining changesets
	Doing a simple, unconflicted merge
	Conflicts and conflict resolution
	Resolving conflicts manually
	The VCS is stupid: its merge is purely textual
	Merge strategies, options, and tools
	Why, and when, should we merge?

	Bibliography

